催化作用
Atom(片上系统)
材料科学
溶解
结晶学
相(物质)
纳米技术
单相
选择性
金属
组合化学
化学
物理化学
计算机科学
有机化学
冶金
电气工程
嵌入式系统
工程类
作者
Lili Han,Hao Cheng,Wei Liu,Haoqiang Li,Pengfei Ou,Ruoqian Lin,Hsiao‐Tsu Wang,Chih‐Wen Pao,Ashley R. Head,Chia‐Hsin Wang,Xiao Tong,Cheng‐Jun Sun,W. F. Pong,Jun Luo,Jin‐Cheng Zheng,Huolin L. Xin
出处
期刊:Nature Materials
[Springer Nature]
日期:2022-05-23
卷期号:21 (6): 681-688
被引量:212
标识
DOI:10.1038/s41563-022-01252-y
摘要
Atomically dispersed single-atom catalysts have the potential to bridge heterogeneous and homogeneous catalysis. Dozens of single-atom catalysts have been developed, and they exhibit notable catalytic activity and selectivity that are not achievable on metal surfaces. Although promising, there is limited knowledge about the boundaries for the monometallic single-atom phase space, not to mention multimetallic phase spaces. Here, single-atom catalysts based on 37 monometallic elements are synthesized using a dissolution-and-carbonization method, characterized and analysed to build the largest reported library of single-atom catalysts. In conjunction with in situ studies, we uncover unified principles on the oxidation state, coordination number, bond length, coordination element and metal loading of single atoms to guide the design of single-atom catalysts with atomically dispersed atoms anchored on N-doped carbon. We utilize the library to open up complex multimetallic phase spaces for single-atom catalysts and demonstrate that there is no fundamental limit on using single-atom anchor sites as structural units to assemble concentration-complex single-atom catalyst materials with up to 12 different elements. Our work offers a single-atom library spanning from monometallic to concentration-complex multimetallic materials for the rational design of single-atom catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI