Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset

聚类分析 分类 毒物控制 加速度 计算机科学 主成分分析 攻击性驾驶 模拟 人工智能 人为因素与人体工程学 物理 医学 经典力学 环境卫生
作者
Xiao Wen,Zhiyong Cui,Sisi Jian
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:172: 106689-106689 被引量:28
标识
DOI:10.1016/j.aap.2022.106689
摘要

As the market penetration rate of automated vehicles (AVs) increases, there will be a transition period when the traffic stream is composed of both AVs and human-driven vehicles (MVs) in the near future. However, the interactions between MVs and AVs, especially whether MVs will behave differently when following AVs compared to following MVs, have not been fully understood. Previous studies in this field mainly conducted traffic/numerical simulations or field experiments to investigate human drivers' behavior changes, but these approaches all have critical drawbacks such as simplified driving environments and limited sample sizes. To fill in the knowledge gap, this study uses the high-resolution (10 Hz) Waymo Open Dataset to reveal differences in car-following behaviors between MV-following-AV and MV-following-MV cases. Driving volatility measures, time headways and time-to-collision (TTC) are adopted to quantify and compare MV-following-AV and MV-following-MV interactions. The principal component analysis (PCA) is applied on the high-dimensional feature space, followed by the hierarchical clustering on the dimension-reduced feature set to categorize MV driving styles when following AVs. The comparison results indicate that MV-following-AV events have lower driving volatility in terms of velocity and acceleration/deceleration, smaller time headways and higher TTC values. Furthermore, the clustering results reveal that human drivers when following AVs exhibit four different car-following styles: high-velocity-non-aggressive, high-velocity-aggressive, low-velocity-non-aggressive, and low-velocity-aggressive. These findings highlight the vital importance of taking into account the heterogeneity of MV-following-AV behaviors when designing mixed traffic control algorithms and can be beneficial for AV fleet operators to improve their algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈大大完成签到,获得积分10
刚刚
掉渣的饼干完成签到,获得积分10
1秒前
zhen完成签到,获得积分10
1秒前
2秒前
科研文献搬运工完成签到,获得积分0
2秒前
yidashi完成签到,获得积分10
2秒前
TrucCSC应助Ganlou采纳,获得10
2秒前
喜宝完成签到 ,获得积分10
3秒前
牛幻香发布了新的文献求助100
3秒前
Derik完成签到,获得积分10
3秒前
RSC完成签到,获得积分10
3秒前
louis发布了新的文献求助10
3秒前
labordoc完成签到,获得积分10
4秒前
独摇之完成签到,获得积分10
4秒前
悦悦完成签到,获得积分10
5秒前
5秒前
hhhh完成签到,获得积分10
5秒前
魔幻高烽完成签到,获得积分10
5秒前
正直的幼萱关注了科研通微信公众号
7秒前
科学家发布了新的文献求助10
7秒前
7秒前
野小子发布了新的文献求助10
7秒前
8秒前
温柔的沉鱼完成签到,获得积分10
8秒前
舒适的梦玉完成签到,获得积分10
9秒前
浮生完成签到 ,获得积分10
10秒前
马一凡完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
FashionBoy应助cxcx采纳,获得10
12秒前
13秒前
常大有完成签到,获得积分10
13秒前
mss12138完成签到,获得积分10
13秒前
指哪打哪完成签到,获得积分10
14秒前
东东完成签到 ,获得积分10
14秒前
我我我完成签到,获得积分10
15秒前
星辰大海应助凉白开采纳,获得10
16秒前
丁小只完成签到,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171737
求助须知:如何正确求助?哪些是违规求助? 2822556
关于积分的说明 7939866
捐赠科研通 2483233
什么是DOI,文献DOI怎么找? 1323073
科研通“疑难数据库(出版商)”最低求助积分说明 633842
版权声明 602647