Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset

聚类分析 分类 毒物控制 加速度 计算机科学 主成分分析 攻击性驾驶 模拟 人工智能 人为因素与人体工程学 物理 医学 经典力学 环境卫生
作者
Xiao Wen,Zhiyong Cui,Sisi Jian
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:172: 106689-106689 被引量:28
标识
DOI:10.1016/j.aap.2022.106689
摘要

As the market penetration rate of automated vehicles (AVs) increases, there will be a transition period when the traffic stream is composed of both AVs and human-driven vehicles (MVs) in the near future. However, the interactions between MVs and AVs, especially whether MVs will behave differently when following AVs compared to following MVs, have not been fully understood. Previous studies in this field mainly conducted traffic/numerical simulations or field experiments to investigate human drivers' behavior changes, but these approaches all have critical drawbacks such as simplified driving environments and limited sample sizes. To fill in the knowledge gap, this study uses the high-resolution (10 Hz) Waymo Open Dataset to reveal differences in car-following behaviors between MV-following-AV and MV-following-MV cases. Driving volatility measures, time headways and time-to-collision (TTC) are adopted to quantify and compare MV-following-AV and MV-following-MV interactions. The principal component analysis (PCA) is applied on the high-dimensional feature space, followed by the hierarchical clustering on the dimension-reduced feature set to categorize MV driving styles when following AVs. The comparison results indicate that MV-following-AV events have lower driving volatility in terms of velocity and acceleration/deceleration, smaller time headways and higher TTC values. Furthermore, the clustering results reveal that human drivers when following AVs exhibit four different car-following styles: high-velocity-non-aggressive, high-velocity-aggressive, low-velocity-non-aggressive, and low-velocity-aggressive. These findings highlight the vital importance of taking into account the heterogeneity of MV-following-AV behaviors when designing mixed traffic control algorithms and can be beneficial for AV fleet operators to improve their algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HMONEY应助长度2到采纳,获得10
1秒前
思源应助正直尔白采纳,获得10
3秒前
loosewires完成签到,获得积分10
4秒前
Wink14551发布了新的文献求助10
4秒前
wy完成签到 ,获得积分10
5秒前
8秒前
10秒前
勤奋尔冬发布了新的文献求助10
10秒前
深情安青应助祎祎采纳,获得10
11秒前
sandyleung完成签到,获得积分10
11秒前
12秒前
surain发布了新的文献求助10
13秒前
oceanic发布了新的文献求助10
15秒前
stephen_wang完成签到,获得积分10
15秒前
体贴的曼凝完成签到,获得积分10
16秒前
qq发布了新的文献求助10
18秒前
lcy完成签到 ,获得积分10
18秒前
21秒前
无花果应助飞飞飞采纳,获得10
23秒前
高高浩然完成签到,获得积分10
24秒前
打打应助婷婷采纳,获得10
24秒前
roblllling发布了新的文献求助10
25秒前
青阳完成签到,获得积分10
28秒前
君君完成签到,获得积分10
29秒前
30秒前
30秒前
严仁杰发布了新的文献求助50
31秒前
LLL完成签到,获得积分10
31秒前
32秒前
脑洞疼应助Panchael采纳,获得10
33秒前
chen完成签到,获得积分10
33秒前
迷人世开完成签到,获得积分10
35秒前
飞飞飞发布了新的文献求助10
35秒前
luermei发布了新的文献求助10
36秒前
打打应助君子不器采纳,获得30
36秒前
biubiubiu发布了新的文献求助10
37秒前
roblllling完成签到,获得积分10
37秒前
蕃茄可乐完成签到,获得积分10
39秒前
科研通AI5应助YMM采纳,获得10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740489
求助须知:如何正确求助?哪些是违规求助? 3283290
关于积分的说明 10034940
捐赠科研通 3000165
什么是DOI,文献DOI怎么找? 1646430
邀请新用户注册赠送积分活动 783550
科研通“疑难数据库(出版商)”最低求助积分说明 750411