聚类分析
分类
毒物控制
加速度
计算机科学
主成分分析
攻击性驾驶
模拟
人工智能
人为因素与人体工程学
物理
医学
经典力学
环境卫生
作者
Xiao Wen,Zhiyong Cui,Sisi Jian
标识
DOI:10.1016/j.aap.2022.106689
摘要
As the market penetration rate of automated vehicles (AVs) increases, there will be a transition period when the traffic stream is composed of both AVs and human-driven vehicles (MVs) in the near future. However, the interactions between MVs and AVs, especially whether MVs will behave differently when following AVs compared to following MVs, have not been fully understood. Previous studies in this field mainly conducted traffic/numerical simulations or field experiments to investigate human drivers' behavior changes, but these approaches all have critical drawbacks such as simplified driving environments and limited sample sizes. To fill in the knowledge gap, this study uses the high-resolution (10 Hz) Waymo Open Dataset to reveal differences in car-following behaviors between MV-following-AV and MV-following-MV cases. Driving volatility measures, time headways and time-to-collision (TTC) are adopted to quantify and compare MV-following-AV and MV-following-MV interactions. The principal component analysis (PCA) is applied on the high-dimensional feature space, followed by the hierarchical clustering on the dimension-reduced feature set to categorize MV driving styles when following AVs. The comparison results indicate that MV-following-AV events have lower driving volatility in terms of velocity and acceleration/deceleration, smaller time headways and higher TTC values. Furthermore, the clustering results reveal that human drivers when following AVs exhibit four different car-following styles: high-velocity-non-aggressive, high-velocity-aggressive, low-velocity-non-aggressive, and low-velocity-aggressive. These findings highlight the vital importance of taking into account the heterogeneity of MV-following-AV behaviors when designing mixed traffic control algorithms and can be beneficial for AV fleet operators to improve their algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI