催化作用
选择性
猝灭(荧光)
化学
材料科学
热力学
化学工程
有机化学
荧光
物理
量子力学
工程类
作者
Qi Dong,Yonggang Yao,Sichao Cheng,Konstantinos Alexopoulos,Jinlong Gao,Sanjana Srinivas,Yifan Wang,Yong Pei,Chaolun Zheng,Alexandra H. Brozena,Hao Zhao,Xizheng Wang,Hilal Ezgi Toraman,Bao Yang,Ioannis G. Kevrekidis,Yiguang Ju,Dionisios G. Vlachos,Dongxia Liu,Liangbing Hu
出处
期刊:Nature
[Springer Nature]
日期:2022-05-18
卷期号:605 (7910): 470-476
被引量:87
标识
DOI:10.1038/s41586-022-04568-6
摘要
Conventional thermochemical syntheses by continuous heating under near-equilibrium conditions face critical challenges in improving the synthesis rate, selectivity, catalyst stability and energy efficiency, owing to the lack of temporal control over the reaction temperature and time, and thus the reaction pathways1–3. As an alternative, we present a non-equilibrium, continuous synthesis technique that uses pulsed heating and quenching (for example, 0.02 s on, 1.08 s off) using a programmable electric current to rapidly switch the reaction between high (for example, up to 2,400 K) and low temperatures. The rapid quenching ensures high selectivity and good catalyst stability, as well as lowers the average temperature to reduce the energy cost. Using CH4 pyrolysis as a model reaction, our programmable heating and quenching technique leads to high selectivity to value-added C2 products (>75% versus <35% by the conventional non-catalytic method and versus <60% by most conventional methods using optimized catalysts). Our technique can be extended to a range of thermochemical reactions, such as NH3 synthesis, for which we achieve a stable and high synthesis rate of about 6,000 μmol gFe−1 h−1 at ambient pressure for >100 h using a non-optimized catalyst. This study establishes a new model towards highly efficient non-equilibrium thermochemical synthesis. By using a programmable electric current to allow rapid pulsed heating and quenching, a non-equilibrium, continuous synthesis technique shows improved performance in thermochemical reactions, as well as lower energy costs.
科研通智能强力驱动
Strongly Powered by AbleSci AI