鸟粪石
碳酸钙
环境科学
碳酸盐
降水
铵
磁导率
环境工程
环境化学
化学
材料科学
废水
复合材料
冶金
生物化学
物理
有机化学
膜
气象学
作者
Xiaoniu Yu,Haoqing Yang,Hao Wang
标识
DOI:10.1016/j.jenvman.2022.115280
摘要
Microbial-induced struvite precipitation (MISP) is a new biocementation method for soil improvement and hydraulic permeability reduction. Compared with traditional microbial-induced carbonate precipitation (MICP), MISP can significantly reduce the production of harmful ammonium ions during biochemical reactions and convert ammonium ions into struvite with promising mechanical strength. In this study, a series of experiments were conducted to compare the performance of the MICP and the MISP processes on sandy soils. Results showed that the average content of calcium carbonate in MISP cemented sand columns after 3 times of injection is similar to that in MICP cemented sand columns after 9 times of injection. The hydraulic permeability of MISP cemented sand columns after 3 times of injection is an order of magnitude lower than that of MICP cemented sand columns after 9 times of injection. To further investigate the physicochemical interactions during MISP and MICP processes, a one-dimensional finite element code considering the chemical reactions and the solute transportation was proposed. Results show that most of the MISP were formed in the early 3 h of the 6 h injection cycle, whereas most of the MICP were formed in the last 5 h of the injection cycle. The simulated total mass of the MISP precipitation, 11.3 g, was close to the experimental result of 9.6 g. The spatial distribution of MISP is more uneven as compared to MICP, as a result of the much faster reaction rate of struvite than calcium carbonate. The findings suggested that MISP could partially replace MICP in the applications of leakage mitigation and reinforcement of sandy soils.
科研通智能强力驱动
Strongly Powered by AbleSci AI