亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feasibility of Deep Learning–Based Noise and Artifact Reduction in Coronal Reformation of Contrast-Enhanced Chest Computed Tomography

冠状面 工件(错误) 医学 图像噪声 对比度(视觉) 图像质量 噪音(视频) 断层摄影术 核医学 信噪比(成像) 放射科 对比噪声比 人工智能 图像(数学) 计算机科学 电信
作者
Eun‐Ju Kang,Hyoung Suk Park,Kiwan Jeon,Ji Won Lee,Jae‐Kwang Lim
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:46 (4): 593-603
标识
DOI:10.1097/rct.0000000000001326
摘要

This study aimed to evaluate the feasibility of a deep learning method for imaging artifact and noise reduction in coronal reformation of contrast-enhanced chest computed tomography (CT).A total of 19,052 coronal reformatted chest CT images of 110 CT image sets (55 pairs of concordant 16- and 320-row CT image sets) were included and used to train a deep learning algorithm for artifact and noise correction. For internal validation, 4093 coronal reformatted CT images of 25 patients from 16-row CT images underwent correction processing. For external validation, chest CT images of 30 patients (1028 coronal reformatted CT images), acquired in other institutions using different scanners, were subjected to correction processing. For both validations, image quality was compared between original ("CT origin ") and deep learning-based corrected ("CT correct ") CT images. Quantitative analysis for stair-step artifact (coefficient of variance of CT density on coronal reformation), image noise, signal-to-noise ratio, and contrast-to-noise ratio were evaluated. Subjective image quality scores were assigned for image contrast, artifact, and conspicuity of major structures.CT correct showed significantly reduced stair-step artifact (mean coefficient of variance: CT origin 7.35 ± 2.0 vs CT correct 5.17 ± 2.4, P < 0.001) and image noise and improved signal-to-noise ratio and contrast-to-noise ratio in the aorta, pulmonary artery, and liver, compared with those of CT origin ( P < 0.01). On subjective analysis, CT correct had higher image contrast, lower artifact, and better conspicuity than CT origin . Most results of the external validation were consistent with those obtained from the internal validation, except for those concerning the pulmonary artery.Deep learning-based artifact correction significantly improved the image quality of coronal reformation chest CT by reducing image noise and artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可夫司机完成签到 ,获得积分10
1秒前
docyuchi发布了新的文献求助10
1秒前
4秒前
划落落发布了新的文献求助20
7秒前
7秒前
隋嫣然完成签到,获得积分10
20秒前
酷波er应助Swii采纳,获得10
31秒前
37秒前
39秒前
青阳发布了新的文献求助30
43秒前
小马甲应助科研通管家采纳,获得10
49秒前
青阳完成签到,获得积分10
50秒前
科目三应助划落落采纳,获得10
56秒前
以菱完成签到 ,获得积分10
58秒前
1分钟前
ff完成签到,获得积分10
1分钟前
1分钟前
廖英健完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
划落落完成签到,获得积分10
1分钟前
划落落发布了新的文献求助10
1分钟前
诚心的信封完成签到 ,获得积分10
1分钟前
123发布了新的文献求助10
1分钟前
2分钟前
2分钟前
冷淡芝麻完成签到 ,获得积分10
2分钟前
micomico完成签到 ,获得积分10
2分钟前
动人的书雪完成签到,获得积分20
2分钟前
2分钟前
MQRR发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
Cherry发布了新的文献求助10
3分钟前
3分钟前
SiyuanLi发布了新的文献求助10
3分钟前
SiyuanLi完成签到,获得积分10
3分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3252956
求助须知:如何正确求助?哪些是违规求助? 2895486
关于积分的说明 8286877
捐赠科研通 2564307
什么是DOI,文献DOI怎么找? 1392288
科研通“疑难数据库(出版商)”最低求助积分说明 652110
邀请新用户注册赠送积分活动 629384