冠状面
工件(错误)
医学
图像噪声
对比度(视觉)
图像质量
噪音(视频)
断层摄影术
核医学
信噪比(成像)
放射科
对比噪声比
人工智能
图像(数学)
计算机科学
电信
作者
Eun‐Ju Kang,Hyoung Suk Park,Kiwan Jeon,Ji Won Lee,Jae‐Kwang Lim
出处
期刊:Journal of Computer Assisted Tomography
[Ovid Technologies (Wolters Kluwer)]
日期:2022-05-20
卷期号:46 (4): 593-603
标识
DOI:10.1097/rct.0000000000001326
摘要
This study aimed to evaluate the feasibility of a deep learning method for imaging artifact and noise reduction in coronal reformation of contrast-enhanced chest computed tomography (CT).A total of 19,052 coronal reformatted chest CT images of 110 CT image sets (55 pairs of concordant 16- and 320-row CT image sets) were included and used to train a deep learning algorithm for artifact and noise correction. For internal validation, 4093 coronal reformatted CT images of 25 patients from 16-row CT images underwent correction processing. For external validation, chest CT images of 30 patients (1028 coronal reformatted CT images), acquired in other institutions using different scanners, were subjected to correction processing. For both validations, image quality was compared between original ("CT origin ") and deep learning-based corrected ("CT correct ") CT images. Quantitative analysis for stair-step artifact (coefficient of variance of CT density on coronal reformation), image noise, signal-to-noise ratio, and contrast-to-noise ratio were evaluated. Subjective image quality scores were assigned for image contrast, artifact, and conspicuity of major structures.CT correct showed significantly reduced stair-step artifact (mean coefficient of variance: CT origin 7.35 ± 2.0 vs CT correct 5.17 ± 2.4, P < 0.001) and image noise and improved signal-to-noise ratio and contrast-to-noise ratio in the aorta, pulmonary artery, and liver, compared with those of CT origin ( P < 0.01). On subjective analysis, CT correct had higher image contrast, lower artifact, and better conspicuity than CT origin . Most results of the external validation were consistent with those obtained from the internal validation, except for those concerning the pulmonary artery.Deep learning-based artifact correction significantly improved the image quality of coronal reformation chest CT by reducing image noise and artifacts.
科研通智能强力驱动
Strongly Powered by AbleSci AI