The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis

肺癌 诊断试验中的似然比 置信区间 荟萃分析 医学 癌症 内科学 诊断优势比 肿瘤科
作者
Mingsi Liu,Jinghui Wu,Nian Wang,Qian Zhang,Yujiao Bai,Jinlin Guo,Lin Zhang,Shu‐Lin Liu,Ke Tao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (3): e0273445-e0273445 被引量:25
标识
DOI:10.1371/journal.pone.0273445
摘要

Lung cancer is a common malignant tumor disease with high clinical disability and death rates. Currently, lung cancer diagnosis mainly relies on manual pathology section analysis, but the low efficiency and subjective nature of manual film reading can lead to certain misdiagnoses and omissions. With the continuous development of science and technology, artificial intelligence (AI) has been gradually applied to imaging diagnosis. Although there are reports on AI-assisted lung cancer diagnosis, there are still problems such as small sample size and untimely data updates. Therefore, in this study, a large amount of recent data was included, and meta-analysis was used to evaluate the value of AI for lung cancer diagnosis. With the help of STATA16.0, the value of AI-assisted lung cancer diagnosis was assessed by specificity, sensitivity, negative likelihood ratio, positive likelihood ratio, diagnostic ratio, and plotting the working characteristic curves of subjects. Meta-regression and subgroup analysis were used to investigate the value of AI-assisted lung cancer diagnosis. The results of the meta-analysis showed that the combined sensitivity of the AI-aided diagnosis system for lung cancer diagnosis was 0.87 [95% CI (0.82, 0.90)], specificity was 0.87 [95% CI (0.82, 0.91)] (CI stands for confidence interval.), the missed diagnosis rate was 13%, the misdiagnosis rate was 13%, the positive likelihood ratio was 6.5 [95% CI (4.6, 9.3)], the negative likelihood ratio was 0.15 [95% CI (0.11, 0.21)], a diagnostic ratio of 43 [95% CI (24, 76)] and a sum of area under the combined subject operating characteristic (SROC) curve of 0.93 [95% CI (0.91, 0.95)]. Based on the results, the AI-assisted diagnostic system for CT (Computerized Tomography), imaging has considerable diagnostic accuracy for lung cancer diagnosis, which is of significant value for lung cancer diagnosis and has greater feasibility of realizing the extension application in the field of clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助徐慕源采纳,获得10
刚刚
格格星发布了新的文献求助10
2秒前
sunnyyty发布了新的文献求助10
3秒前
tanjianxin发布了新的文献求助10
3秒前
JIE发布了新的文献求助10
3秒前
安娜完成签到,获得积分10
3秒前
怕黑砖头发布了新的文献求助10
4秒前
科目三应助饭小心采纳,获得10
4秒前
4秒前
科研通AI2S应助花陵采纳,获得10
4秒前
善学以致用应助大吴克采纳,获得10
6秒前
老实雁蓉完成签到,获得积分10
6秒前
良辰应助zjh采纳,获得10
6秒前
yulong完成签到 ,获得积分10
7秒前
热心的早晨完成签到,获得积分10
7秒前
如此纠结完成签到,获得积分10
7秒前
多多就是小豆芽完成签到 ,获得积分10
8秒前
8秒前
Owen应助Lwxbb采纳,获得10
8秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
8秒前
小小杜完成签到,获得积分10
8秒前
初心完成签到,获得积分20
8秒前
丽丽完成签到 ,获得积分10
8秒前
学术蟑螂发布了新的文献求助10
8秒前
文艺的竺完成签到,获得积分10
9秒前
小林太郎应助斯奈克采纳,获得20
9秒前
9秒前
情怀应助执笔曦倾年采纳,获得10
9秒前
9秒前
9秒前
9秒前
科研民工完成签到,获得积分10
10秒前
FR完成签到,获得积分10
10秒前
11秒前
小马甲应助浩浩大人采纳,获得10
11秒前
11秒前
小小杜发布了新的文献求助20
11秒前
打打应助袁国惠采纳,获得10
11秒前
11秒前
哈哈哈完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740