重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis

肺癌 诊断试验中的似然比 置信区间 荟萃分析 医学 癌症 内科学 诊断优势比 肿瘤科
作者
Mingsi Liu,Jinghui Wu,Nian Wang,Qian Zhang,Yujiao Bai,Jinlin Guo,Lin Zhang,Shu‐Lin Liu,Ke Tao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (3): e0273445-e0273445 被引量:25
标识
DOI:10.1371/journal.pone.0273445
摘要

Lung cancer is a common malignant tumor disease with high clinical disability and death rates. Currently, lung cancer diagnosis mainly relies on manual pathology section analysis, but the low efficiency and subjective nature of manual film reading can lead to certain misdiagnoses and omissions. With the continuous development of science and technology, artificial intelligence (AI) has been gradually applied to imaging diagnosis. Although there are reports on AI-assisted lung cancer diagnosis, there are still problems such as small sample size and untimely data updates. Therefore, in this study, a large amount of recent data was included, and meta-analysis was used to evaluate the value of AI for lung cancer diagnosis. With the help of STATA16.0, the value of AI-assisted lung cancer diagnosis was assessed by specificity, sensitivity, negative likelihood ratio, positive likelihood ratio, diagnostic ratio, and plotting the working characteristic curves of subjects. Meta-regression and subgroup analysis were used to investigate the value of AI-assisted lung cancer diagnosis. The results of the meta-analysis showed that the combined sensitivity of the AI-aided diagnosis system for lung cancer diagnosis was 0.87 [95% CI (0.82, 0.90)], specificity was 0.87 [95% CI (0.82, 0.91)] (CI stands for confidence interval.), the missed diagnosis rate was 13%, the misdiagnosis rate was 13%, the positive likelihood ratio was 6.5 [95% CI (4.6, 9.3)], the negative likelihood ratio was 0.15 [95% CI (0.11, 0.21)], a diagnostic ratio of 43 [95% CI (24, 76)] and a sum of area under the combined subject operating characteristic (SROC) curve of 0.93 [95% CI (0.91, 0.95)]. Based on the results, the AI-assisted diagnostic system for CT (Computerized Tomography), imaging has considerable diagnostic accuracy for lung cancer diagnosis, which is of significant value for lung cancer diagnosis and has greater feasibility of realizing the extension application in the field of clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
absb发布了新的文献求助10
刚刚
乐乐应助wise111采纳,获得10
1秒前
苹果元瑶完成签到 ,获得积分10
1秒前
rh发布了新的文献求助10
2秒前
zll发布了新的文献求助10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Huguizhou发布了新的文献求助10
4秒前
4秒前
Snoopy发布了新的文献求助10
5秒前
英俊的铭应助奋斗映天采纳,获得10
6秒前
qwe完成签到,获得积分10
7秒前
刻苦的旺仔完成签到,获得积分10
7秒前
Hello应助zcy采纳,获得10
8秒前
zll完成签到,获得积分10
8秒前
8秒前
尼古拉斯.科研.红完成签到 ,获得积分10
9秒前
慕青应助rh采纳,获得10
9秒前
9秒前
跳跃的迎荷完成签到 ,获得积分10
9秒前
10秒前
wzy完成签到,获得积分20
10秒前
qwe发布了新的文献求助10
10秒前
科研通AI6应助aa采纳,获得10
11秒前
SciGPT应助勤奋的远锋采纳,获得10
11秒前
11秒前
Tbby发布了新的文献求助10
12秒前
4AF关闭了4AF文献求助
12秒前
斯文败类应助125ljw采纳,获得10
12秒前
丘比特应助殷勤的晓亦采纳,获得10
12秒前
萝卜家大小姐完成签到,获得积分10
14秒前
汪格森发布了新的文献求助10
14秒前
wise111发布了新的文献求助10
14秒前
kaka发布了新的文献求助10
14秒前
14秒前
钟小先生完成签到 ,获得积分10
15秒前
所所应助寒夜采纳,获得10
15秒前
可乐发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739