The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis

肺癌 诊断试验中的似然比 置信区间 荟萃分析 医学 癌症 内科学 诊断优势比 肿瘤科
作者
Mingsi Liu,Jinghui Wu,Nian Wang,Qian Zhang,Yujiao Bai,Jinlin Guo,Lin Zhang,Shu‐Lin Liu,Ke Tao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (3): e0273445-e0273445 被引量:25
标识
DOI:10.1371/journal.pone.0273445
摘要

Lung cancer is a common malignant tumor disease with high clinical disability and death rates. Currently, lung cancer diagnosis mainly relies on manual pathology section analysis, but the low efficiency and subjective nature of manual film reading can lead to certain misdiagnoses and omissions. With the continuous development of science and technology, artificial intelligence (AI) has been gradually applied to imaging diagnosis. Although there are reports on AI-assisted lung cancer diagnosis, there are still problems such as small sample size and untimely data updates. Therefore, in this study, a large amount of recent data was included, and meta-analysis was used to evaluate the value of AI for lung cancer diagnosis. With the help of STATA16.0, the value of AI-assisted lung cancer diagnosis was assessed by specificity, sensitivity, negative likelihood ratio, positive likelihood ratio, diagnostic ratio, and plotting the working characteristic curves of subjects. Meta-regression and subgroup analysis were used to investigate the value of AI-assisted lung cancer diagnosis. The results of the meta-analysis showed that the combined sensitivity of the AI-aided diagnosis system for lung cancer diagnosis was 0.87 [95% CI (0.82, 0.90)], specificity was 0.87 [95% CI (0.82, 0.91)] (CI stands for confidence interval.), the missed diagnosis rate was 13%, the misdiagnosis rate was 13%, the positive likelihood ratio was 6.5 [95% CI (4.6, 9.3)], the negative likelihood ratio was 0.15 [95% CI (0.11, 0.21)], a diagnostic ratio of 43 [95% CI (24, 76)] and a sum of area under the combined subject operating characteristic (SROC) curve of 0.93 [95% CI (0.91, 0.95)]. Based on the results, the AI-assisted diagnostic system for CT (Computerized Tomography), imaging has considerable diagnostic accuracy for lung cancer diagnosis, which is of significant value for lung cancer diagnosis and has greater feasibility of realizing the extension application in the field of clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荣誉完成签到,获得积分10
刚刚
bkagyin应助感动世倌采纳,获得10
1秒前
2秒前
小二郎完成签到,获得积分10
3秒前
nielu发布了新的文献求助10
3秒前
云飞扬完成签到 ,获得积分10
4秒前
一叶舟完成签到,获得积分10
4秒前
小果完成签到,获得积分10
4秒前
俏皮的飞荷完成签到 ,获得积分10
4秒前
南山无玫落完成签到 ,获得积分10
5秒前
和谐的寄凡完成签到,获得积分10
6秒前
MXX发布了新的文献求助10
7秒前
grs完成签到,获得积分10
8秒前
丁元英完成签到,获得积分10
8秒前
博士完成签到 ,获得积分10
9秒前
9秒前
10秒前
11秒前
Tangyartie完成签到 ,获得积分10
11秒前
13秒前
Y82220057完成签到 ,获得积分10
13秒前
14秒前
感动世倌发布了新的文献求助10
14秒前
卟噜完成签到,获得积分10
14秒前
feizao完成签到,获得积分10
16秒前
panda发布了新的文献求助10
18秒前
研友_Z729Mn发布了新的文献求助10
18秒前
buno完成签到,获得积分10
19秒前
医学生完成签到,获得积分10
20秒前
wtdai完成签到,获得积分10
22秒前
细心的黑米完成签到,获得积分10
22秒前
22秒前
Sophia发布了新的文献求助10
23秒前
Lyue完成签到,获得积分10
23秒前
Kyrie完成签到,获得积分10
24秒前
25秒前
感动世倌完成签到,获得积分10
25秒前
红薯干完成签到,获得积分10
25秒前
在水一方应助精明秋采纳,获得10
28秒前
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162652
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900951
捐赠科研通 2473107
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175