已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis

肺癌 诊断试验中的似然比 置信区间 荟萃分析 医学 癌症 内科学 诊断优势比 肿瘤科
作者
Mingsi Liu,Jinghui Wu,Nian Wang,Qian Zhang,Yujiao Bai,Jinlin Guo,Lin Zhang,Shu‐Lin Liu,Ke Tao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (3): e0273445-e0273445 被引量:25
标识
DOI:10.1371/journal.pone.0273445
摘要

Lung cancer is a common malignant tumor disease with high clinical disability and death rates. Currently, lung cancer diagnosis mainly relies on manual pathology section analysis, but the low efficiency and subjective nature of manual film reading can lead to certain misdiagnoses and omissions. With the continuous development of science and technology, artificial intelligence (AI) has been gradually applied to imaging diagnosis. Although there are reports on AI-assisted lung cancer diagnosis, there are still problems such as small sample size and untimely data updates. Therefore, in this study, a large amount of recent data was included, and meta-analysis was used to evaluate the value of AI for lung cancer diagnosis. With the help of STATA16.0, the value of AI-assisted lung cancer diagnosis was assessed by specificity, sensitivity, negative likelihood ratio, positive likelihood ratio, diagnostic ratio, and plotting the working characteristic curves of subjects. Meta-regression and subgroup analysis were used to investigate the value of AI-assisted lung cancer diagnosis. The results of the meta-analysis showed that the combined sensitivity of the AI-aided diagnosis system for lung cancer diagnosis was 0.87 [95% CI (0.82, 0.90)], specificity was 0.87 [95% CI (0.82, 0.91)] (CI stands for confidence interval.), the missed diagnosis rate was 13%, the misdiagnosis rate was 13%, the positive likelihood ratio was 6.5 [95% CI (4.6, 9.3)], the negative likelihood ratio was 0.15 [95% CI (0.11, 0.21)], a diagnostic ratio of 43 [95% CI (24, 76)] and a sum of area under the combined subject operating characteristic (SROC) curve of 0.93 [95% CI (0.91, 0.95)]. Based on the results, the AI-assisted diagnostic system for CT (Computerized Tomography), imaging has considerable diagnostic accuracy for lung cancer diagnosis, which is of significant value for lung cancer diagnosis and has greater feasibility of realizing the extension application in the field of clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
严明完成签到,获得积分0
2秒前
严明完成签到,获得积分0
2秒前
优秀的雨筠完成签到 ,获得积分10
2秒前
蓝莓小蛋糕完成签到 ,获得积分10
3秒前
桐炫完成签到,获得积分10
3秒前
旺旺雪饼发布了新的文献求助10
3秒前
米饭儿完成签到 ,获得积分10
4秒前
义气幼珊完成签到 ,获得积分10
5秒前
呵呵完成签到 ,获得积分10
5秒前
5秒前
春山完成签到 ,获得积分10
5秒前
6秒前
周航应助念卿采纳,获得10
6秒前
pinklay完成签到 ,获得积分10
7秒前
9秒前
WEILAI完成签到 ,获得积分10
9秒前
10秒前
10秒前
Akim应助早睡早起采纳,获得10
10秒前
10秒前
10秒前
云一朵完成签到 ,获得积分10
11秒前
Jasper应助细腻的冷卉采纳,获得30
11秒前
田様应助科研通管家采纳,获得10
11秒前
11秒前
大模型应助科研通管家采纳,获得30
11秒前
poorzz发布了新的文献求助10
12秒前
13秒前
Liz完成签到,获得积分10
13秒前
所所应助112采纳,获得10
14秒前
14秒前
水晶鞋完成签到 ,获得积分10
15秒前
家稚晴发布了新的文献求助10
16秒前
laifeihong发布了新的文献求助10
16秒前
碧蓝的以云完成签到 ,获得积分10
18秒前
18秒前
陈琪发布了新的文献求助10
18秒前
Dai发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5722957
求助须知:如何正确求助?哪些是违规求助? 5273976
关于积分的说明 15298034
捐赠科研通 4871748
什么是DOI,文献DOI怎么找? 2616169
邀请新用户注册赠送积分活动 1566020
关于科研通互助平台的介绍 1522944