The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis

肺癌 诊断试验中的似然比 置信区间 荟萃分析 医学 癌症 内科学 诊断优势比 肿瘤科
作者
Mingsi Liu,Jinghui Wu,Nian Wang,Qian Zhang,Yujiao Bai,Jinlin Guo,Lin Zhang,Shu‐Lin Liu,Ke Tao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (3): e0273445-e0273445 被引量:25
标识
DOI:10.1371/journal.pone.0273445
摘要

Lung cancer is a common malignant tumor disease with high clinical disability and death rates. Currently, lung cancer diagnosis mainly relies on manual pathology section analysis, but the low efficiency and subjective nature of manual film reading can lead to certain misdiagnoses and omissions. With the continuous development of science and technology, artificial intelligence (AI) has been gradually applied to imaging diagnosis. Although there are reports on AI-assisted lung cancer diagnosis, there are still problems such as small sample size and untimely data updates. Therefore, in this study, a large amount of recent data was included, and meta-analysis was used to evaluate the value of AI for lung cancer diagnosis. With the help of STATA16.0, the value of AI-assisted lung cancer diagnosis was assessed by specificity, sensitivity, negative likelihood ratio, positive likelihood ratio, diagnostic ratio, and plotting the working characteristic curves of subjects. Meta-regression and subgroup analysis were used to investigate the value of AI-assisted lung cancer diagnosis. The results of the meta-analysis showed that the combined sensitivity of the AI-aided diagnosis system for lung cancer diagnosis was 0.87 [95% CI (0.82, 0.90)], specificity was 0.87 [95% CI (0.82, 0.91)] (CI stands for confidence interval.), the missed diagnosis rate was 13%, the misdiagnosis rate was 13%, the positive likelihood ratio was 6.5 [95% CI (4.6, 9.3)], the negative likelihood ratio was 0.15 [95% CI (0.11, 0.21)], a diagnostic ratio of 43 [95% CI (24, 76)] and a sum of area under the combined subject operating characteristic (SROC) curve of 0.93 [95% CI (0.91, 0.95)]. Based on the results, the AI-assisted diagnostic system for CT (Computerized Tomography), imaging has considerable diagnostic accuracy for lung cancer diagnosis, which is of significant value for lung cancer diagnosis and has greater feasibility of realizing the extension application in the field of clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chizhi完成签到,获得积分10
1秒前
jjc发布了新的文献求助10
1秒前
CodeCraft应助PhDL1采纳,获得10
1秒前
lyp7028完成签到,获得积分10
1秒前
王孝松发布了新的文献求助10
2秒前
陈昭琼发布了新的文献求助10
2秒前
研友_VZG64n完成签到,获得积分10
2秒前
LIUY发布了新的文献求助10
2秒前
enen发布了新的文献求助10
3秒前
3秒前
3秒前
清韵微风完成签到,获得积分10
3秒前
雨晴发布了新的文献求助10
4秒前
Jasper应助uu白采纳,获得10
5秒前
5秒前
化身孤岛的鲸完成签到 ,获得积分10
5秒前
Duha完成签到,获得积分10
6秒前
6秒前
6秒前
上上签完成签到,获得积分10
6秒前
醉熏的雁完成签到 ,获得积分10
7秒前
情怀应助Gao采纳,获得10
7秒前
NanNan626发布了新的文献求助10
7秒前
7秒前
杭紫雪完成签到,获得积分10
7秒前
Re完成签到,获得积分10
7秒前
温柔的中蓝完成签到,获得积分10
7秒前
Akim应助暴躁的小蘑菇采纳,获得10
8秒前
懒羊羊完成签到,获得积分10
8秒前
繁荣的凡双完成签到,获得积分10
8秒前
momo完成签到,获得积分10
8秒前
9秒前
科研通AI6应助笑傲江湖采纳,获得30
9秒前
量子星尘发布了新的文献求助10
9秒前
mingxuan完成签到,获得积分10
10秒前
《子非鱼》完成签到,获得积分10
10秒前
cccc完成签到,获得积分10
10秒前
浮游应助Benliu采纳,获得10
10秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151604
求助须知:如何正确求助?哪些是违规求助? 4347231
关于积分的说明 13536167
捐赠科研通 4189937
什么是DOI,文献DOI怎么找? 2297805
邀请新用户注册赠送积分活动 1298127
关于科研通互助平台的介绍 1242778