The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis

肺癌 诊断试验中的似然比 置信区间 荟萃分析 医学 癌症 内科学 诊断优势比 肿瘤科
作者
Mingsi Liu,Jinghui Wu,Nian Wang,Qian Zhang,Yujiao Bai,Jinlin Guo,Lin Zhang,Shu‐Lin Liu,Ke Tao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (3): e0273445-e0273445 被引量:25
标识
DOI:10.1371/journal.pone.0273445
摘要

Lung cancer is a common malignant tumor disease with high clinical disability and death rates. Currently, lung cancer diagnosis mainly relies on manual pathology section analysis, but the low efficiency and subjective nature of manual film reading can lead to certain misdiagnoses and omissions. With the continuous development of science and technology, artificial intelligence (AI) has been gradually applied to imaging diagnosis. Although there are reports on AI-assisted lung cancer diagnosis, there are still problems such as small sample size and untimely data updates. Therefore, in this study, a large amount of recent data was included, and meta-analysis was used to evaluate the value of AI for lung cancer diagnosis. With the help of STATA16.0, the value of AI-assisted lung cancer diagnosis was assessed by specificity, sensitivity, negative likelihood ratio, positive likelihood ratio, diagnostic ratio, and plotting the working characteristic curves of subjects. Meta-regression and subgroup analysis were used to investigate the value of AI-assisted lung cancer diagnosis. The results of the meta-analysis showed that the combined sensitivity of the AI-aided diagnosis system for lung cancer diagnosis was 0.87 [95% CI (0.82, 0.90)], specificity was 0.87 [95% CI (0.82, 0.91)] (CI stands for confidence interval.), the missed diagnosis rate was 13%, the misdiagnosis rate was 13%, the positive likelihood ratio was 6.5 [95% CI (4.6, 9.3)], the negative likelihood ratio was 0.15 [95% CI (0.11, 0.21)], a diagnostic ratio of 43 [95% CI (24, 76)] and a sum of area under the combined subject operating characteristic (SROC) curve of 0.93 [95% CI (0.91, 0.95)]. Based on the results, the AI-assisted diagnostic system for CT (Computerized Tomography), imaging has considerable diagnostic accuracy for lung cancer diagnosis, which is of significant value for lung cancer diagnosis and has greater feasibility of realizing the extension application in the field of clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂飙的小蜗牛完成签到,获得积分10
刚刚
完美世界应助九霄采纳,获得10
刚刚
crispy发布了新的文献求助30
刚刚
1秒前
1秒前
mylian发布了新的文献求助10
1秒前
1秒前
小坤同学发布了新的文献求助10
2秒前
芝士发布了新的文献求助10
2秒前
踏雾发布了新的文献求助10
2秒前
YinchenChen发布了新的文献求助10
2秒前
2秒前
科研通AI6应助hahaha采纳,获得10
2秒前
3秒前
orixero应助Master_Ye采纳,获得10
3秒前
3秒前
欣喜电源完成签到,获得积分10
3秒前
传奇3应助咪花嗦采纳,获得10
3秒前
平淡问寒完成签到,获得积分10
4秒前
科研通AI6应助tinale_huang采纳,获得10
4秒前
科研通AI6应助tinale_huang采纳,获得10
4秒前
科研通AI6应助tinale_huang采纳,获得10
4秒前
XZX发布了新的文献求助10
4秒前
今后应助dwaekki采纳,获得10
4秒前
WX完成签到,获得积分10
4秒前
yinrongbin完成签到,获得积分10
4秒前
科研通AI6应助喵喵采纳,获得10
5秒前
情怀应助ABC的风格采纳,获得10
5秒前
轧贝葡胺完成签到,获得积分10
5秒前
lilili完成签到,获得积分20
6秒前
打打应助T1aNer299采纳,获得10
6秒前
赘婿应助听枫采纳,获得10
7秒前
7秒前
7秒前
王//////发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
嘛呱完成签到,获得积分10
8秒前
李li发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647599
求助须知:如何正确求助?哪些是违规求助? 4773824
关于积分的说明 15040250
捐赠科研通 4806401
什么是DOI,文献DOI怎么找? 2570250
邀请新用户注册赠送积分活动 1527084
关于科研通互助平台的介绍 1486162