已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Wind design of solar panels for resilient and green communities: CFD with machine learning

计算流体力学 光伏系统 可再生能源 风速 海洋工程 环境科学 建筑CFD 计算机科学 气象学 模拟 航空航天工程 工程类 物理 电气工程
作者
Aly Mousaad Aly,John Clarke
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:94: 104529-104529 被引量:20
标识
DOI:10.1016/j.scs.2023.104529
摘要

Climate change mitigation and adaptation in urban environments call for more reliance on clean energy sources. Large photovoltaic (PV) systems have been enjoying renewed interest in clean and renewable energy. However, designing resilient PV systems faces an increased risk due to windstorms. Whether wind loads on PV systems are well understood, properly accounted for, and the damage is mitigated are crucial questions. While computational fluid dynamics (CFD) is proven effective for quantifying wind loads on structures, accurate and affordable computations are challenging. In this paper, we employ CFD approaches and machine learning (ML) to obtain the design wind loads on solar panels. We validate the CFD simulations using experimental data and compare the results with the standard practice. Our findings suggest that experimentally validated CFD simulations can yield different results from the standard practice. Additionally, we recommend stowing solar panels at a -15° angle during wind events to reduce damage. CFD simulations are then employed to train an ML model to predict velocity and pressure distributions around a solar panel. The study demonstrates that integrating ML and CFD can significantly speed up simulations (up to 10,000 times faster) without sacrificing accuracy. Efficient designs can shape the future of PV systems and contribute to climate change adaptation and mitigation for improved disaster resilience and circular economy policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beichuanheqi完成签到,获得积分10
2秒前
俺爱SCI发布了新的文献求助10
3秒前
4秒前
meng完成签到,获得积分10
9秒前
西羽完成签到,获得积分10
9秒前
10秒前
10秒前
现代雅香完成签到,获得积分10
11秒前
简单海露完成签到,获得积分10
12秒前
13秒前
14秒前
姜敏敏发布了新的文献求助10
14秒前
JHY完成签到 ,获得积分10
14秒前
15秒前
15秒前
17秒前
18秒前
大气如曼发布了新的文献求助10
18秒前
搜集达人应助子曰采纳,获得10
20秒前
Binbin完成签到,获得积分10
21秒前
21秒前
22秒前
123发布了新的文献求助10
23秒前
勤恳的小松鼠完成签到,获得积分10
24秒前
小跳发布了新的文献求助10
24秒前
等等完成签到,获得积分20
25秒前
Binbin发布了新的文献求助10
26秒前
26秒前
等等发布了新的文献求助10
28秒前
小鱼完成签到 ,获得积分10
28秒前
30秒前
大气如曼完成签到,获得积分20
30秒前
Qiao应助科研通管家采纳,获得10
30秒前
竹筏过海应助科研通管家采纳,获得30
30秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
Qiao应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307081
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8499176
捐赠科研通 2615063
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648318