材料科学
超级电容器
电极
电流密度
六亚甲基四胺
电解质
同种类的
复合数
化学工程
电容感应
电化学
复合材料
纳米技术
化学
电气工程
热力学
物理
工程类
物理化学
量子力学
作者
You Fu,Xueqin Liu,Leiyun Han,Zheng Xie,Huaxia Chen,Yingjie Hua,Chongtai Wang
标识
DOI:10.1016/j.est.2022.105450
摘要
Aim to improve the capacitive performance of the NiCo 2 S 4 -based electrode materials, a novel composite material with a homogeneous and heteromorphic construction, h -NiCo 2 S 4 / u -NiCo 2 S 4 /NF, was successfully prepared through layer-by-layer growth in a hydrothermal process using urea and hexamethylenetetramine as alkali source in this work. This material presents a specific capacity high up to 1245.3 C g −1 (345.9 mAh g −1 ) at the current density of 2 A g −1 in a 6 M KOH electrolyte solution. Moreover, a 74.6 % of the initial specific capacity is still retained when the current density increases from 2 to 10 A g −1 , showing a relatively good rate capability. Especially, an 84.0 % of capacity retention rate can be obtained after it suffers from 7000 charging-discharging cycles at 50 mA cm −2 (9.2 A g −1 ), exhibiting a good cycling stability. Using it as the positive electrode material to assemble an asymmetrical supercapacitive device with a home-made porous carbon (PC) as the negative electrode material, an energy density high up to 48.4 Wh kg −1 at 1060.6 W kg −1 and a 63.2 % of capacity retention rate at 10,000 charging-discharging cycles can be achieved, superior to many NiCo 2 S 4 -based asymmetrical supercapacitive devices reported so far. • A novel NiCo 2 S 4 -based electrode material h -NiCo 2 S 4 / u -NiCo 2 S 4 /NF for supercapacitors was successfully prepared. • The prepared electrode material can provide a specific capacity high up to 1245.3 C g -1 at 2 A g -1 . • The prepared electrode material possesses a superior rate capability and charge-discharge cycling stability. • An asymmetric supercapacitor device assembled using this material can deliver an energy density of 48.4 Wh kg -1 at 1060.6 W kg -1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI