吞噬作用
石英晶体微天平
U937电池
重组DNA
细胞生物学
单核细胞
糖蛋白
化学
生物
分子生物学
生物化学
体外
免疫学
基因
有机化学
吸附
作者
Tor Persson Skare,Hiroshi Kaito,Claudia Durall,Teodor Aastrup,Lena Claesson‐Welsh
出处
期刊:Cells
[MDPI AG]
日期:2022-08-29
卷期号:11 (17): 2684-2684
被引量:1
标识
DOI:10.3390/cells11172684
摘要
The plasma protein histidine-rich glycoprotein (HRG) is implicated in the polarization of macrophages to an M1 antitumoral phenotype. The broadly expressed secreted protein stanniocalcin 2 (STC2), also implicated in tumor inflammation, is an HRG interaction partner. With the aim to biochemically characterize the HRG and STC2 complex, binding of recombinant HRG and STC2 preparations to each other and to cells was explored using the quartz crystal microbalance (QCM) methodology. The functionality of recombinant proteins was tested in a phagocytosis assay, where HRG increased phagocytosis by monocytic U937 cells while STC2 suppressed HRG-induced phagocytosis. The binding of HRG to STC2, measured using QCM, showed an affinity between the proteins in the nanomolar range, and both HRG and STC2 bound individually and in combination to vitamin D3-treated, differentiated U937 monocytes. HRG, but not STC2, also bound to formaldehyde-fixed U937 cells irrespective of their differentiation stage in part through the interaction with heparan sulfate. These data show that HRG and STC2 bind to each other as well as to U937 monocytes with high affinity, supporting the relevance of these interactions in monocyte/macrophage polarity.
科研通智能强力驱动
Strongly Powered by AbleSci AI