亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

State-of-the-Art Methods for Exposure-Health Studies: results from the Exposome Data Challenge Event

暴露的 数据科学 计算机科学 特征选择 组学 环境流行病学 多因子降维法 计算生物学 数据挖掘 生物信息学
作者
Léa Maitre,Jean-Baptiste Guimbaud,Charline Warembourg,Nuria Güil-Oumrait,Paula Marcela Petrone,Marc Chadeau-Hyam,Martine Vrijheid,Juan R. Gonzalez,Xavier Basagaña
出处
期刊:Environment International [Elsevier]
卷期号:168: 107422-107422
标识
DOI:10.1016/j.envint.2022.107422
摘要

The exposome recognizes that individuals are exposed simultaneously to a multitude of different environmental factors and takes a holistic approach to the discovery of etiological factors for disease. However, challenges arise when trying to quantify the health effects of complex exposure mixtures. Analytical challenges include dealing with high dimensionality, studying the combined effects of these exposures and their interactions, integrating causal pathways, and integrating high-throughput omics layers. To tackle these challenges, the Barcelona Institute for Global Health (ISGlobal) held a data challenge event open to researchers from all over the world and from all expertises. Analysts had a chance to compete and apply state-of-the-art methods on a common partially simulated exposome dataset (based on real case data from the HELIX project) with multiple correlated exposure variables ( P >100 exposure variables) arising from general and personal environments at different time points, biological molecular data (multi-omics: DNA methylation, gene expression, proteins, metabolomics) and multiple clinical phenotypes in 1301 mother-child pairs. Most of the methods presented included feature selection or feature reduction to deal with the high dimensionality of the exposome dataset. Several approaches explicitly searched for combined effects of exposures and/or their interactions using linear index models or response surface methods, including Bayesian methods. Other methods dealt with the multi-omics dataset in mediation analyses using multiple-step approaches. Here we discuss features of the statistical models used and provide the data and codes used, so that analysts have examples of implementation and can learn how to use these methods. Overall, the exposome data challenge presented a unique opportunity for researchers from different disciplines to create and share state-of-the-art analytical methods, setting a new standard for open science in the exposome and environmental health field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang发布了新的文献求助10
1秒前
10秒前
李健的小迷弟应助家湘采纳,获得10
12秒前
13秒前
13秒前
易殇发布了新的文献求助30
18秒前
22秒前
QQ发布了新的文献求助10
22秒前
李健的小迷弟应助高强采纳,获得10
22秒前
Wang完成签到,获得积分10
23秒前
ling361完成签到,获得积分10
24秒前
24秒前
碳酸芙兰完成签到,获得积分10
28秒前
28秒前
高强完成签到,获得积分10
30秒前
小二郎应助科研通管家采纳,获得10
31秒前
卷卷完成签到 ,获得积分10
32秒前
高强发布了新的文献求助10
33秒前
易殇完成签到,获得积分20
34秒前
思源应助科研小白采纳,获得10
35秒前
37秒前
YOLO完成签到 ,获得积分10
39秒前
华仔应助adfadf采纳,获得10
41秒前
42秒前
42秒前
choyng完成签到,获得积分10
42秒前
choyng发布了新的文献求助30
46秒前
QQ完成签到,获得积分20
46秒前
47秒前
科研小白发布了新的文献求助10
50秒前
51秒前
adfadf发布了新的文献求助10
55秒前
57秒前
xiong完成签到 ,获得积分10
57秒前
长情黄蜂发布了新的文献求助10
1分钟前
1分钟前
1分钟前
狼啸天应助Hu采纳,获得10
1分钟前
1分钟前
vicky发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135474
关于积分的说明 9412362
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728442
科研通“疑难数据库(出版商)”最低求助积分说明 716832