EmoMusicTV: Emotion-Conditioned Symbolic Music Generation With Hierarchical Transformer VAE

计算机科学 自编码 人工智能 语音识别 Chord(对等) 自然语言处理 深度学习 分布式计算
作者
Shulei Ji,Xinyu Yang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 1076-1088 被引量:7
标识
DOI:10.1109/tmm.2023.3276177
摘要

Emotion is one of the most crucial attributes of music. However, due to the scarcity of emotional music datasets, emotion-conditioned symbolic music generation using deep learning techniques has not been investigated in depth. In particular, no study explores conditional music generation with the guidance of emotion, and few studies adopt time-varying emotional conditions. To address these issues, first, we endow three public lead sheet datasets with fine-grained emotions by automatically computing the valence labels from the chord progressions. Second, we propose a novel and effective encoder-decoder architecture named EmoMusicTV to explore the impact of emotional conditions on multiple music generation tasks and to capture the rich variability of musical sequences. EmoMusicTV is a transformer-based variational autoencoder (VAE) that contains a hierarchical latent variable structure to model holistic properties of the music segments and short-term variations within bars. The piece-level and bar-level emotional labels are embedded in their corresponding latent spaces to guide music generation. Third, we pretrain EmoMusicTV with the lead sheet continuation task to further improve its performance on conditional melody or harmony generation. Experimental results demonstrate that EmoMusicTV outperforms previous methods on three tasks, i.e., melody harmonization, melody generation given harmony, and lead sheet generation. Ablation studies verify the significant roles of emotional conditions and hierarchical latent variable structure on conditional music generation. Human listening shows that the lead sheets generated by EmoMusicTV are closer to the ground truth (GT) and perform slightly worse than the GT in conveying emotional polarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhouhao完成签到 ,获得积分10
2秒前
Ava应助二十九采纳,获得10
4秒前
LL完成签到,获得积分10
6秒前
夜王发布了新的文献求助10
7秒前
12345发布了新的文献求助10
9秒前
10秒前
淡淡的纸鹤完成签到,获得积分20
11秒前
上官若男应助Nick爱学习采纳,获得10
11秒前
13秒前
14秒前
UNIQUE完成签到,获得积分10
14秒前
15秒前
五十一笑声应助compass采纳,获得50
16秒前
邵燚铭完成签到 ,获得积分10
16秒前
CC完成签到 ,获得积分10
18秒前
可靠代丝发布了新的文献求助10
18秒前
jyx发布了新的文献求助10
18秒前
18秒前
爱科研的小太阳完成签到,获得积分10
19秒前
20秒前
二十九发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
欢喜的皮卡丘完成签到,获得积分10
24秒前
25秒前
乐乐发布了新的文献求助10
25秒前
26秒前
orixero应助YANG采纳,获得10
26秒前
善良小夏完成签到,获得积分10
26秒前
26秒前
zou发布了新的文献求助10
26秒前
26秒前
面包人发布了新的文献求助10
27秒前
28秒前
28秒前
28秒前
29秒前
AbyssK完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943