Receding Horizon Actor–Critic Learning Control for Nonlinear Time-Delay Systems With Unknown Dynamics

控制理论(社会学) 模型预测控制 非线性系统 控制器(灌溉) 趋同(经济学) 最优控制 机电一体化 计算机科学 区间(图论) 动态规划 地平线 理论(学习稳定性) 控制系统 控制(管理) 控制工程 数学优化 数学 工程类 人工智能 算法 经济 电气工程 物理 机器学习 几何学 组合数学 生物 量子力学 经济增长 农学
作者
Jiahang Liu,Xinglong Zhang,Xin Xu,Quan Xiong
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (8): 4980-4993 被引量:6
标识
DOI:10.1109/tsmc.2023.3254911
摘要

With the development of modern mechatronics and networked systems, the controller design of time-delay systems has received notable attention. Time delays can greatly influence the stability and performance of the systems, especially for optimal control design. In this article, we propose a receding horizon actor–critic learning control approach for near-optimal control of nonlinear time-delay systems (RACL-TD) with unknown dynamics. In the proposed approach, a data-driven predictor for nonlinear time-delay systems is first learned based on the Koopman theory using precollected samples. Then, a receding horizon actor–critic architecture is designed to learn a near-optimal control policy. In RACL-TD, the terminal cost is determined by using the Lyapunov–Krasovskii approach so that the influences of the delayed states and control inputs can be well addressed. Furthermore, a relaxed terminal condition is present to reduce the computational cost. The convergence and optimality of RACL-TD in each prediction interval as well as the closed-loop property of the system are discussed and analyzed. Simulation results on a two-stage time-delayed chemical reactor illustrate that RACL-TD can achieve better control performance than nonlinear model predictive control (MPC) and infinite-horizon adaptive dynamic programming. Moreover, RACL-TD can have less computational cost than nonlinear MPC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助zwy109采纳,获得10
刚刚
lz4540完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
浮游应助科研通管家采纳,获得10
2秒前
脑洞疼应助木子采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
白云完成签到,获得积分10
2秒前
我是老大应助真陈采纳,获得10
2秒前
DijiaXu应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
xingql983应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
华仔应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
丁浩添发布了新的文献求助10
3秒前
大个应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得20
4秒前
perth完成签到,获得积分10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Islet发布了新的文献求助10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559