Recent advances in electrochemical impedance spectroscopy for solid-state batteries

材料科学 介电谱 阳极 电解质 电化学 电阻抗 等效电路 阴极 锂(药物) 纳米技术 电压 工程物理 电气工程 电极 物理化学 工程类 化学 医学 内分泌学
作者
Lei Zhang,Yao Dai,Chao Li,Yuzhen Dang,Runguo Zheng,Zhiyuan Wang,Yuan Wang,Yanhua Cui,Hamidreza Arandiyan,Zongping Shao,Hongyu Sun,Quanchao Zhuang,Yanguo Liu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:69: 103378-103378 被引量:90
标识
DOI:10.1016/j.ensm.2024.103378
摘要

Electrochemical impedance spectroscopy (EIS) is a powerful technique widely used for characterizing electrochemical systems, especially in the investigation of ion diffusion, electrochemical reactions, and charge transfer within lithium-ion batteries. Solid-state batteries (SSBs), envisioned for their potential to achieve high energy density and enhanced safety, comprise essential components-namely, a high-voltage cathode, a solid-state electrolyte (SSE), and a Li metal anode. While SSBs hold great promise, the utilization of EIS in studying SSBs is still in its infancy. Since various SSB systems exhibit different electrolyte properties (e.g., ionic conductivity, ionic transport activation energy, and ionic transference number) and interface properties (e.g., interface impedance and charge transfer impedance), the assignment of EIS features is highly controversial. Herein, this review provides an overview of the various SSE types and introduces the applied fundamentals of EIS in SSBs, including EIS basic theory, cell design and modeling methods. Subsequently, a common physical model for SSBs is summarized based on EIS research examples in SSBs. The assignment of each EIS features is discussed, and the corresponding equivalent circuit is also offered. Lastly, the review introduces emerging EIS-related technologies, laying the groundwork for future application in SSBs investigations. This review aims to enhance the understanding of SSBs and EIS, fostering the acceleration of SSBs from laboratory-scale experimentation to practical commercial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀儿发布了新的文献求助10
刚刚
1秒前
无花果应助虚幻曼容采纳,获得10
1秒前
小鱼鱼发布了新的文献求助10
1秒前
1秒前
直率安双发布了新的文献求助10
1秒前
mmc发布了新的文献求助10
2秒前
3秒前
我是老大应助自由人采纳,获得10
3秒前
杨哈哈完成签到,获得积分20
3秒前
4秒前
ShanYexia发布了新的文献求助10
4秒前
4秒前
wonderingria完成签到,获得积分10
4秒前
FJLSDNMV发布了新的文献求助10
4秒前
好好学习发布了新的文献求助10
4秒前
4秒前
NOT完成签到 ,获得积分10
4秒前
5秒前
5秒前
系统提示霸气车厘子超出配送范围完成签到,获得积分20
5秒前
景秋灵完成签到,获得积分10
5秒前
zjh11143完成签到,获得积分10
5秒前
橘子发布了新的文献求助10
5秒前
JIAca完成签到,获得积分20
5秒前
上官若男应助hrk采纳,获得10
6秒前
zmr123发布了新的文献求助10
6秒前
匿名应助HK采纳,获得30
6秒前
guoguo发布了新的文献求助30
6秒前
lvzhechen完成签到,获得积分10
6秒前
科研通AI6应助hd采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
LYXLYXLYXLA完成签到,获得积分10
7秒前
田様应助柒吾采纳,获得10
7秒前
8秒前
xxtdger完成签到 ,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389