STCNet: Alternating CNN and improved transformer network for COVID-19 CT image segmentation

2019年冠状病毒病(COVID-19) 计算机科学 变压器 人工智能 分割 计算机视觉 2019-20冠状病毒爆发 模式识别(心理学) 医学 物理 病毒学 电压 疾病 病理 量子力学 爆发 传染病(医学专业)
作者
Peng Geng,Ziye Tan,Yimeng Wang,Wenran Jia,Ying Zhang,Hongjiang Yan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106205-106205 被引量:4
标识
DOI:10.1016/j.bspc.2024.106205
摘要

Since the emergence of the Corona Virus Disease in 2019 (COVID-19), it has become a serious health problem affecting the human respiratory system. At present, automatic segmentation of lung infection areas from Computed Tomography has been playing a crucial role in the diagnosis of this disease because of its ability to perform pathological studies based on the lung infection areas. However, due to the lung infection areas scattered distribution, the existing segmentation methods generally have the problems of missing and incomplete segmentation. The Convolutional Neural Network (CNN)-based approaches generally lack the ability to model explicit long-range relation, and the transformer-based methods are not conducive to capturing the detailed boundaries of infected areas. Whereas the infected regions of the coronavirus images are scattered and boundary information plays an important role, both the boundaries and the global infected areas need to be taken into account. Therefore, we propose a novel coronavirus image segmentation network alternately using Swin transformer and CNN (STCNet). Firstly, to enable network to capture richer features, the ReSwin transformer block is proposed and added after each level of convolution block in the encoder-decoder. Secondly, to effectively retain the infected areas boundary information, the skip connection cross attention module is used to provide spatial information to each decoder. And through the fine-tuned scale-aware pyramid fusion module to fuse multi-scale context information. Experimental results show that STCNet at can achieve state-of-the-art performance on two coronavirus segmentation datasets, with Dice achieves 79.92 % and 82.78 %, respectively. Our code is available at https://github.com/sineagles/STCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白夜柏拉图完成签到 ,获得积分10
刚刚
刚刚
司空悒完成签到,获得积分10
1秒前
茶巽完成签到,获得积分20
1秒前
魁梧的海秋完成签到,获得积分10
1秒前
辛勤香岚完成签到,获得积分10
2秒前
勾栏听曲完成签到,获得积分10
2秒前
cdsd完成签到,获得积分10
3秒前
ZHANG完成签到,获得积分10
4秒前
Dante完成签到,获得积分10
4秒前
低头啃草牛完成签到,获得积分10
4秒前
jayus完成签到,获得积分10
4秒前
4秒前
叶子完成签到,获得积分10
5秒前
大意的红酒完成签到 ,获得积分10
5秒前
5433发布了新的文献求助10
5秒前
阿伦完成签到,获得积分10
7秒前
7秒前
fluorine完成签到,获得积分10
8秒前
8秒前
精明的惜筠完成签到,获得积分10
9秒前
青衍完成签到,获得积分10
9秒前
彭于晏应助会化蝶采纳,获得10
10秒前
li完成签到 ,获得积分10
11秒前
称心采枫完成签到 ,获得积分10
11秒前
我我我完成签到,获得积分10
11秒前
12秒前
Cheshire完成签到,获得积分10
13秒前
蒋声育完成签到 ,获得积分10
13秒前
14秒前
licaifang发布了新的文献求助10
14秒前
脑洞疼应助爱学习的超采纳,获得10
14秒前
迷蝴蝶完成签到,获得积分10
14秒前
大力流沙完成签到,获得积分10
15秒前
haha完成签到 ,获得积分10
15秒前
HawreKhdir发布了新的文献求助10
15秒前
豪杰完成签到,获得积分10
15秒前
Vicky完成签到,获得积分10
18秒前
maox1aoxin应助Ganlou采纳,获得30
18秒前
痴情的翠桃完成签到,获得积分10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257190
求助须知:如何正确求助?哪些是违规求助? 2899091
关于积分的说明 8303699
捐赠科研通 2568424
什么是DOI,文献DOI怎么找? 1395064
科研通“疑难数据库(出版商)”最低求助积分说明 652936
邀请新用户注册赠送积分活动 630683