STCNet: Alternating CNN and improved transformer network for COVID-19 CT image segmentation

2019年冠状病毒病(COVID-19) 计算机科学 变压器 人工智能 分割 计算机视觉 2019-20冠状病毒爆发 模式识别(心理学) 医学 物理 病毒学 电压 疾病 病理 量子力学 爆发 传染病(医学专业)
作者
Peng Geng,Ziye Tan,Yimeng Wang,Wenran Jia,Ying Zhang,Hongjiang Yan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106205-106205 被引量:4
标识
DOI:10.1016/j.bspc.2024.106205
摘要

Since the emergence of the Corona Virus Disease in 2019 (COVID-19), it has become a serious health problem affecting the human respiratory system. At present, automatic segmentation of lung infection areas from Computed Tomography has been playing a crucial role in the diagnosis of this disease because of its ability to perform pathological studies based on the lung infection areas. However, due to the lung infection areas scattered distribution, the existing segmentation methods generally have the problems of missing and incomplete segmentation. The Convolutional Neural Network (CNN)-based approaches generally lack the ability to model explicit long-range relation, and the transformer-based methods are not conducive to capturing the detailed boundaries of infected areas. Whereas the infected regions of the coronavirus images are scattered and boundary information plays an important role, both the boundaries and the global infected areas need to be taken into account. Therefore, we propose a novel coronavirus image segmentation network alternately using Swin transformer and CNN (STCNet). Firstly, to enable network to capture richer features, the ReSwin transformer block is proposed and added after each level of convolution block in the encoder-decoder. Secondly, to effectively retain the infected areas boundary information, the skip connection cross attention module is used to provide spatial information to each decoder. And through the fine-tuned scale-aware pyramid fusion module to fuse multi-scale context information. Experimental results show that STCNet at can achieve state-of-the-art performance on two coronavirus segmentation datasets, with Dice achieves 79.92 % and 82.78 %, respectively. Our code is available at https://github.com/sineagles/STCNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
56天与坎坷和客户完成签到,获得积分10
1秒前
1秒前
1秒前
Suxxin完成签到 ,获得积分10
1秒前
2秒前
2秒前
能干的捕发布了新的文献求助10
3秒前
3秒前
小墨墨完成签到 ,获得积分10
3秒前
javen完成签到,获得积分10
3秒前
活在当下发布了新的文献求助30
4秒前
5秒前
5秒前
琉璃发布了新的文献求助10
5秒前
wwy727完成签到 ,获得积分10
5秒前
6秒前
辰时完成签到,获得积分10
6秒前
7秒前
DJ发布了新的文献求助10
7秒前
lei发布了新的文献求助10
8秒前
谦让亦巧发布了新的文献求助30
8秒前
辰时发布了新的文献求助10
9秒前
9秒前
顺利的问柳完成签到,获得积分10
9秒前
10秒前
蹦蹦发布了新的文献求助10
10秒前
10秒前
海风发布了新的文献求助10
11秒前
dili发布了新的文献求助10
11秒前
bobo完成签到,获得积分10
11秒前
李健的小迷弟应助santiago采纳,获得10
11秒前
miaopan完成签到,获得积分10
11秒前
科目三应助张豪杰采纳,获得10
12秒前
14秒前
大大小小发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
56566完成签到,获得积分20
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684969
求助须知:如何正确求助?哪些是违规求助? 5039665
关于积分的说明 15185713
捐赠科研通 4844070
什么是DOI,文献DOI怎么找? 2597083
邀请新用户注册赠送积分活动 1549686
关于科研通互助平台的介绍 1508151