STCNet: Alternating CNN and improved transformer network for COVID-19 CT image segmentation

2019年冠状病毒病(COVID-19) 计算机科学 变压器 人工智能 分割 计算机视觉 2019-20冠状病毒爆发 模式识别(心理学) 医学 物理 病毒学 电压 量子力学 爆发 病理 传染病(医学专业) 疾病
作者
Peng Geng,Ziye Tan,Yimeng Wang,Wenran Jia,Ying Zhang,Hongjiang Yan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:93: 106205-106205 被引量:4
标识
DOI:10.1016/j.bspc.2024.106205
摘要

Since the emergence of the Corona Virus Disease in 2019 (COVID-19), it has become a serious health problem affecting the human respiratory system. At present, automatic segmentation of lung infection areas from Computed Tomography has been playing a crucial role in the diagnosis of this disease because of its ability to perform pathological studies based on the lung infection areas. However, due to the lung infection areas scattered distribution, the existing segmentation methods generally have the problems of missing and incomplete segmentation. The Convolutional Neural Network (CNN)-based approaches generally lack the ability to model explicit long-range relation, and the transformer-based methods are not conducive to capturing the detailed boundaries of infected areas. Whereas the infected regions of the coronavirus images are scattered and boundary information plays an important role, both the boundaries and the global infected areas need to be taken into account. Therefore, we propose a novel coronavirus image segmentation network alternately using Swin transformer and CNN (STCNet). Firstly, to enable network to capture richer features, the ReSwin transformer block is proposed and added after each level of convolution block in the encoder-decoder. Secondly, to effectively retain the infected areas boundary information, the skip connection cross attention module is used to provide spatial information to each decoder. And through the fine-tuned scale-aware pyramid fusion module to fuse multi-scale context information. Experimental results show that STCNet at can achieve state-of-the-art performance on two coronavirus segmentation datasets, with Dice achieves 79.92 % and 82.78 %, respectively. Our code is available at https://github.com/sineagles/STCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_ZzReaZ完成签到,获得积分20
刚刚
堆堆完成签到,获得积分10
刚刚
Imwang完成签到,获得积分10
1秒前
nini发布了新的文献求助10
2秒前
汽水完成签到,获得积分20
2秒前
linguo完成签到,获得积分10
3秒前
3秒前
危机的蜜粉完成签到,获得积分10
4秒前
安详靖巧完成签到,获得积分10
4秒前
小饼干完成签到,获得积分10
5秒前
nini完成签到,获得积分20
5秒前
小蘑菇应助Imwang采纳,获得10
5秒前
5秒前
万能图书馆应助TheYNJ采纳,获得10
5秒前
5秒前
6秒前
6秒前
Negan关注了科研通微信公众号
6秒前
慕青应助眯眯眼的枕头采纳,获得10
6秒前
6秒前
一手抓爆乌云完成签到,获得积分10
6秒前
zf完成签到,获得积分10
6秒前
lgw发布了新的文献求助10
7秒前
AI完成签到 ,获得积分10
7秒前
超级丸子完成签到,获得积分10
7秒前
kiwi发布了新的文献求助10
7秒前
余与鱼完成签到,获得积分10
7秒前
抹茶完成签到 ,获得积分10
8秒前
Yong完成签到,获得积分10
8秒前
我是老大应助Eliauk采纳,获得10
8秒前
9秒前
在水一方应助七七采纳,获得10
9秒前
科研通AI6应助linn采纳,获得10
9秒前
安详靖巧发布了新的文献求助10
9秒前
现代一德发布了新的文献求助10
9秒前
wzx发布了新的文献求助10
10秒前
传奇3应助焕颜采纳,获得10
10秒前
顺利毕业完成签到,获得积分10
10秒前
导师老八发布了新的文献求助10
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239316
求助须知:如何正确求助?哪些是违规求助? 4406741
关于积分的说明 13715300
捐赠科研通 4275149
什么是DOI,文献DOI怎么找? 2345932
邀请新用户注册赠送积分活动 1343067
关于科研通互助平台的介绍 1301010