Evaluating Prognosis of Gastrointestinal Metastatic Neuroendocrine Tumors: Constructing a Novel Prognostic Nomogram Based on NETPET Score and Metabolic Parameters from PET/CT Imaging

列线图 医学 神经内分泌肿瘤 标准摄取值 正电子发射断层摄影术 PET-CT 接收机工作特性 比例危险模型 一致性 核医学 分级(工程) 放射科 内科学 肿瘤科 土木工程 工程类
作者
Yifan Liu,Rui Cui,Z. Wang,Lin Qi,Taotao Wei,Bing Zhang,Guanghua Li,Zhao Wang
出处
期刊:Pharmaceuticals [MDPI AG]
卷期号:17 (3): 373-373
标识
DOI:10.3390/ph17030373
摘要

The goal of this study is to compare the prognostic performance of NETPET scores, based on gallium-68 DOTANOC (68Ga-DOTANOC) and fluorine-18 fluorodeoxyglucose (18F-FDG) Positron Emission Tomography-Computed Tomography (PET-CT), and PET-CT metabolic parameters in metastatic gastrointestinal neuroendocrine tumors (GI-NET), while constructing and validating a nomogram derived from dual-scan PET-CT.In this retrospective study, G1-G3 GI-NET patients who underwent 68Ga-DOTANOC and 18F-FDG PET scans were enrolled and divided into training and internal validation cohorts. Three grading systems were constructed based on NETPET scores and standardized uptake value maximum (SUVmax). LASSO regression selected variables for a multivariable Cox model, and nomograms predicting progression-free survival (PFS) and overall survival (OS) were created. The prognostic performance of these systems was assessed using time-dependent receiver-operating characteristic (ROC) curves, concordance index (C-index), and other methods. Nomogram evaluation involved calibration curves, decision curve analysis (DCA), and the aforementioned methods in both cohorts.In this study, 223 patients (130 males; mean age ± SD: 52.6 ± 12 years) were divided into training (148) and internal validation (75) cohorts. Dual scans were classified based on NETPET scores (D1-D3). Single 68Ga-DOTANOC and 18F-FDG PET-CT scans were stratified into S1-S3 and F1-F3 based on SUVmax. The NETPET score-based grading system demonstrated the best OS and PFS prediction (C-index, 0.763 vs. 0.727 vs. 0.566). Nomograms for OS and PFS exhibited superior prognostic performance in both cohorts (all AUCs > 0.8).New classification based on NETPET score predicts patient OS/PFS best. PET-CT-based nomograms show accurate OS/PFS forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lianqing完成签到,获得积分10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
1秒前
RC_Wang应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
hh应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得30
1秒前
1秒前
Leif应助科研通管家采纳,获得20
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
忘羡222发布了新的文献求助20
4秒前
丰富猕猴桃完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
JamesPei应助咿咿呀呀采纳,获得10
5秒前
www完成签到,获得积分10
5秒前
科研通AI2S应助Jenny采纳,获得10
6秒前
limin完成签到,获得积分10
7秒前
7秒前
风格完成签到,获得积分10
8秒前
情怀应助专心搞学术采纳,获得20
9秒前
9秒前
zeke发布了新的文献求助10
9秒前
不爱吃糖发布了新的文献求助10
10秒前
852应助冷傲迎梦采纳,获得10
11秒前
陶醉觅夏发布了新的文献求助200
12秒前
12秒前
exile完成签到,获得积分10
13秒前
朱一龙发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824