A local–global unified scheme driven by positionable texture and multi-level boundary for lung cancer organoids segmentation

计算机科学 方案(数学) 分割 类有机物 边界(拓扑) 纹理(宇宙学) 人工智能 计算机视觉 数学 图像(数学) 生物 遗传学 数学分析
作者
Jiansong Fan,Tianxu Lv,Shunyuan Jia,Yuan Liu,Ruihong Deng,Zexin Chen,Yu Zhu,Lihua Li,Chunjuan Jiang,Jianming Ni,Xiang Pan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:250: 123888-123888
标识
DOI:10.1016/j.eswa.2024.123888
摘要

Organoids have great potential as ex vivo disease models for drug discovery and personalized drug screening. Accurate segmentation of individual organoids can provide fundamental indicators of drug response, such as morphology, number, and size. However, for organoids microscopic images data, existing methods cannot automatically and accurately segment organoids due to its problems such as strong adhesion, high background noise, and blurred boundaries. In bridging the gap, we propose a novel unified scheme(PTMBNet) driven by positionable texture and multi-level boundary for achieving accurate organoid segmentation. In particular, we introduce a Texture Positioning Module(TPM) and a Texture Feature Extraction Module(TFM) based on a learnable texture quantification method to capture enhanced texture quantification information and localize segmentation targets under high background noise, respectively. Subsequently, we design a Multi-level Boundary Feature Extraction Module(MBFM) to extract multi-dimensional semantics associated with organoids boundaries. Then, a specially crafted Boundary Restraint Module(BRM) is leveraged to seamlessly extend the positional boundary features to the global context and refine the organoids boundary. Furthermore, we present a Boundary-Texture Consistency loss (BTC) that aims to jointly supervise boundary prediction and texture segmentation outcomes. As part of this study, we manually annotate a substantial and high-quality dataset of lung cancer organoids(LCOs) microscopic images. In comparison to the state-of-the-art methods, the proposed PTMBNet achieves superior segmentation results on the LCOs dataset, with an improvement of 3.4% on Dice and 4.9% on Iou.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
刚刚
momo应助科研通管家采纳,获得10
刚刚
刚刚
CodeCraft应助宋礼采纳,获得10
刚刚
刚刚
刚刚
英姑应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
BowieHuang应助ivy采纳,获得10
1秒前
酷波er应助ivy采纳,获得10
1秒前
William鉴哲发布了新的文献求助10
1秒前
2秒前
jj发布了新的文献求助10
3秒前
RK_404发布了新的文献求助10
4秒前
一一应助顺心傲南采纳,获得10
5秒前
w1b完成签到,获得积分10
6秒前
7秒前
科目三应助一颗橘子洲头采纳,获得30
9秒前
cjh关闭了cjh文献求助
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
bin发布了新的文献求助30
18秒前
无限的含蕾完成签到,获得积分10
18秒前
888完成签到 ,获得积分10
19秒前
Owen应助今天要清零采纳,获得10
19秒前
21秒前
21秒前
奋斗小医生完成签到,获得积分10
21秒前
王志杰发布了新的文献求助10
21秒前
周灏烜完成签到,获得积分10
22秒前
111发布了新的文献求助10
23秒前
23秒前
mylene_完成签到,获得积分10
24秒前
24秒前
畅快城完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685