A local–global unified scheme driven by positionable texture and multi-level boundary for lung cancer organoids segmentation

计算机科学 方案(数学) 分割 类有机物 边界(拓扑) 纹理(宇宙学) 人工智能 计算机视觉 数学 图像(数学) 生物 遗传学 数学分析
作者
Jiansong Fan,Tianxu Lv,Shuwen Jia,Бо Лю,Ruihong Deng,Zexin Chen,Yuanxin Zhu,Lihua Li,Chunjuan Jiang,Jianming Ni,Pan Xiang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:250: 123888-123888
标识
DOI:10.1016/j.eswa.2024.123888
摘要

Organoids have great potential as ex vivo disease models for drug discovery and personalized drug screening. Accurate segmentation of individual organoids can provide fundamental indicators of drug response, such as morphology, number, and size. However, for organoids microscopic images data, existing methods cannot automatically and accurately segment organoids due to its problems such as strong adhesion, high background noise, and blurred boundaries. In bridging the gap, we propose a novel unified scheme(PTMBNet) driven by positionable texture and multi-level boundary for achieving accurate organoid segmentation. In particular, we introduce a Texture Positioning Module(TPM) and a Texture Feature Extraction Module(TFM) based on a learnable texture quantification method to capture enhanced texture quantification information and localize segmentation targets under high background noise, respectively. Subsequently, we design a Multi-level Boundary Feature Extraction Module(MBFM) to extract multi-dimensional semantics associated with organoids boundaries. Then, a specially crafted Boundary Restraint Module(BRM) is leveraged to seamlessly extend the positional boundary features to the global context and refine the organoids boundary. Furthermore, we present a Boundary-Texture Consistency loss (BTC) that aims to jointly supervise boundary prediction and texture segmentation outcomes. As part of this study, we manually annotate a substantial and high-quality dataset of lung cancer organoids(LCOs) microscopic images. In comparison to the state-of-the-art methods, the proposed PTMBNet achieves superior segmentation results on the LCOs dataset, with an improvement of 3.4% on Dice and 4.9% on Iou.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
经法发布了新的文献求助10
刚刚
FengyaoWang完成签到,获得积分10
刚刚
陶醉的向珊完成签到,获得积分10
1秒前
xczhu完成签到,获得积分10
1秒前
1秒前
cheng完成签到,获得积分10
2秒前
hecarli完成签到,获得积分10
2秒前
W哇发布了新的文献求助30
2秒前
Jenny应助AD采纳,获得10
2秒前
田様应助闪闪飞机采纳,获得10
3秒前
3秒前
写不出来发布了新的文献求助10
3秒前
mary完成签到,获得积分10
3秒前
甲基醚完成签到 ,获得积分10
4秒前
兴奋的凝丝完成签到,获得积分10
4秒前
reck发布了新的文献求助10
5秒前
缥缈的语雪完成签到 ,获得积分10
5秒前
feifei发布了新的文献求助10
5秒前
5秒前
silong发布了新的文献求助10
6秒前
6秒前
6秒前
123_完成签到,获得积分10
6秒前
无花果应助初吻还在采纳,获得10
6秒前
6秒前
7秒前
Gzqq完成签到,获得积分10
7秒前
璃月稻妻完成签到,获得积分10
8秒前
8秒前
111111完成签到,获得积分10
8秒前
坚强的紊完成签到,获得积分10
8秒前
orixero应助黄紫红蓝采纳,获得10
8秒前
会长大的幸福完成签到 ,获得积分10
9秒前
iNk应助lalala采纳,获得10
9秒前
10秒前
无情念之发布了新的文献求助10
10秒前
100发布了新的文献求助10
10秒前
wanyanjin完成签到,获得积分10
11秒前
周老八发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672