A local–global unified scheme driven by positionable texture and multi-level boundary for lung cancer organoids segmentation

计算机科学 方案(数学) 分割 类有机物 边界(拓扑) 纹理(宇宙学) 人工智能 计算机视觉 数学 图像(数学) 生物 遗传学 数学分析
作者
Jiansong Fan,Tianxu Lv,Shuwen Jia,Бо Лю,Ruihong Deng,Zexin Chen,Yuanxin Zhu,Lihua Li,Chunjuan Jiang,Jianming Ni,Pan Xiang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:250: 123888-123888
标识
DOI:10.1016/j.eswa.2024.123888
摘要

Organoids have great potential as ex vivo disease models for drug discovery and personalized drug screening. Accurate segmentation of individual organoids can provide fundamental indicators of drug response, such as morphology, number, and size. However, for organoids microscopic images data, existing methods cannot automatically and accurately segment organoids due to its problems such as strong adhesion, high background noise, and blurred boundaries. In bridging the gap, we propose a novel unified scheme(PTMBNet) driven by positionable texture and multi-level boundary for achieving accurate organoid segmentation. In particular, we introduce a Texture Positioning Module(TPM) and a Texture Feature Extraction Module(TFM) based on a learnable texture quantification method to capture enhanced texture quantification information and localize segmentation targets under high background noise, respectively. Subsequently, we design a Multi-level Boundary Feature Extraction Module(MBFM) to extract multi-dimensional semantics associated with organoids boundaries. Then, a specially crafted Boundary Restraint Module(BRM) is leveraged to seamlessly extend the positional boundary features to the global context and refine the organoids boundary. Furthermore, we present a Boundary-Texture Consistency loss (BTC) that aims to jointly supervise boundary prediction and texture segmentation outcomes. As part of this study, we manually annotate a substantial and high-quality dataset of lung cancer organoids(LCOs) microscopic images. In comparison to the state-of-the-art methods, the proposed PTMBNet achieves superior segmentation results on the LCOs dataset, with an improvement of 3.4% on Dice and 4.9% on Iou.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助旧旧采纳,获得10
刚刚
科目三应助江一山采纳,获得10
刚刚
1秒前
2秒前
vivid完成签到,获得积分10
2秒前
2秒前
李二狗完成签到,获得积分10
3秒前
DaDA发布了新的文献求助10
3秒前
Lucas应助肖智议采纳,获得10
4秒前
犹豫寒云完成签到,获得积分10
4秒前
4秒前
完美世界应助云翰采纳,获得10
5秒前
5秒前
6秒前
爱听歌的依秋完成签到,获得积分10
6秒前
6秒前
文艺蛋挞发布了新的文献求助10
6秒前
7秒前
7秒前
清脆大娘发布了新的文献求助30
8秒前
晴天小土豆完成签到 ,获得积分10
8秒前
菠萝炒饭发布了新的文献求助10
8秒前
9秒前
老肥完成签到,获得积分10
9秒前
无花果应助等等采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
我是老大应助科研通管家采纳,获得30
10秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328727
求助须知:如何正确求助?哪些是违规求助? 2958780
关于积分的说明 8591961
捐赠科研通 2637090
什么是DOI,文献DOI怎么找? 1443351
科研通“疑难数据库(出版商)”最低求助积分说明 668684
邀请新用户注册赠送积分活动 656012