Unraveling the immunogenetic landscape of autism spectrum disorder: a comprehensive bioinformatics approach

自闭症谱系障碍 计算生物学 自闭症 生物信息学 生物 医学 精神科
作者
Jieying Ma,Deyang Liu,Jianzhong Zhao,Xiaolu Fang,Dengyin Bu
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1347139
摘要

Background Autism spectrum disorder (ASD) is a disease characterized by social disorder. Recently, the population affected by ASD has gradually increased around the world. There are great difficulties in diagnosis and treatment at present. Methods The ASD datasets were obtained from the Gene Expression Omnibus database and the immune-relevant genes were downloaded from a previously published compilation. Subsequently, we used WGCNA to screen the modules related to the ASD and immune. We also choose the best combination and screen out the core genes from Consensus Machine Learning Driven Signatures (CMLS). Subsequently, we evaluated the genetic correlation between immune cells and ASD used GNOVA. And pleiotropic regions identified by PLACO and CPASSOC between ASD and immune cells. FUMA was used to identify pleiotropic regions, and expression trait loci (EQTL) analysis was used to determine their expression in different tissues and cells. Finally, we use qPCR to detect the gene expression level of the core gene. Results We found a close relationship between neutrophils and ASD, and subsequently, CMLS identified a total of 47 potential candidate genes. Secondly, GNOVA showed a significant genetic correlation between neutrophils and ASD, and PLACO and CPASSOC identified a total of 14 pleiotropic regions. We annotated the 14 regions mentioned above and identified a total of 6 potential candidate genes. Through EQTL, we found that the CFLAR gene has a specific expression pattern in neutrophils, suggesting that it may serve as a potential biomarker for ASD and is closely related to its pathogenesis. Conclusions In conclusion, our study yields unprecedented insights into the molecular and genetic heterogeneity of ASD through a comprehensive bioinformatics analysis. These valuable findings hold significant implications for tailoring personalized ASD therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bb关注了科研通微信公众号
1秒前
柠一完成签到 ,获得积分10
1秒前
1秒前
2秒前
虚拟的绫完成签到,获得积分10
3秒前
guojingjing发布了新的文献求助10
4秒前
4秒前
磁带机完成签到,获得积分10
4秒前
不知为不知完成签到,获得积分10
4秒前
王王泽发布了新的文献求助10
5秒前
doctor_loong完成签到 ,获得积分10
6秒前
小闰土完成签到,获得积分10
6秒前
De.完成签到 ,获得积分10
6秒前
林子觽完成签到,获得积分10
7秒前
echo完成签到,获得积分10
7秒前
星空完成签到 ,获得积分10
8秒前
健哥发布了新的文献求助10
9秒前
任性的凡完成签到,获得积分10
9秒前
超帅鸣凤完成签到,获得积分10
10秒前
10秒前
章鱼小丸子完成签到,获得积分10
11秒前
舟遥遥完成签到,获得积分10
12秒前
无欲无求傻傻完成签到,获得积分20
13秒前
皓轩完成签到 ,获得积分10
14秒前
myl完成签到,获得积分10
14秒前
SciGPT应助Gloyxtg采纳,获得10
14秒前
sober完成签到,获得积分10
14秒前
Dannerys完成签到 ,获得积分10
14秒前
zyyyyyy完成签到,获得积分10
15秒前
leaiy_完成签到,获得积分10
15秒前
李爱国应助小揭采纳,获得10
16秒前
JackWang618完成签到,获得积分10
17秒前
饱满的新之完成签到 ,获得积分10
17秒前
17秒前
wency完成签到,获得积分10
18秒前
orixero应助橘子树采纳,获得10
18秒前
周星星完成签到,获得积分20
18秒前
kk完成签到,获得积分20
19秒前
guojingjing发布了新的文献求助10
20秒前
JIAO完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890