Diagnostic accuracy of artificial intelligence assisted clinical imaging in the detection of oral potentially malignant disorders and oral cancer: A systematic review and meta-analysis

诊断优势比 医学 接收机工作特性 荟萃分析 曲线下面积 林地 癌症 优势比 诊断试验中的似然比 试验预测值 内科学 放射科
作者
Jingwen Li,Witold Kot,Colman McGrath,Bik Wan Amy Chan,Joshua W. K. Ho,Li Wu Zheng
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000001469
摘要

Background: The objective of this study is to examine the application of AI algorithms in detecting OPMD and oral cancerous lesions, and to evaluate the accuracy variations among different imaging tools employed in these diagnostic processes. Materials and methods: A systematic search was conducted in four databases: Embase, Web of Science, PubMed, and Scopus. The inclusion criteria included studies using machine learning algorithms to provide diagnostic information on specific oral lesions, prospective or retrospective design, and inclusion of OPMD. Sensitivity and specificity analyses were also required. Forest plots were generated to display overall diagnostic odds ratio (DOR), sensitivity, specificity, negative predictive values, and summary receiver operating characteristic (SROC) curves. Meta-regression analysis was conducted to examine potential differences among different imaging tools. Results: The overall DOR for AI-based screening of OPMD and oral mucosal cancerous lesions from normal mucosa was 68.438 (95%CI= [39.484, 118.623], I 2 = 86%). The area under the SROC curve was 0.938, indicating excellent diagnostic performance. AI-assisted screening showed a sensitivity of 89.9% (95%CI= [0.866,0.925]; I 2 = 81%), specificity of 89.2% (95%CI= [0.851,0.922], I2 = 79%), and a high negative predictive value of 89.5% (95%CI= [0.851; 0.927], I 2 = 96%). Meta-regression analysis revealed no significant difference among the three image tools. After generating a GOSH plot, the DOR was calculated to be 49.30, and the area under the SROC curve was 0.877. Additionally, sensitivity, specificity, and negative predictive value were 90.5% (95%CI [0.873,0.929], I 2 =4%), 87.0% (95%CI [0.813,0.912], I 2 =49%) and 90.1% (95%CI [0.860,0.931], I 2 =57%), respectively. Subgroup analysis showed that clinical photography had the highest diagnostic accuracy. Conclusions: AI-based detection using clinical photography shows a high diagnostic odds ratio and is easily accessible in the current era with billions of phone subscribers globally. This indicates that there is significant potential for AI to enhance the diagnostic capabilities of general practitioners to the level of specialists by utilizing clinical photographs, without the need for expensive specialized imaging equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Master完成签到,获得积分10
1秒前
钮黎昕发布了新的文献求助10
1秒前
2秒前
NW发布了新的文献求助10
2秒前
桐桐应助hr采纳,获得10
2秒前
田様应助Alan采纳,获得10
2秒前
3秒前
NMSL完成签到,获得积分20
3秒前
Cmax_发布了新的文献求助30
3秒前
小帅发布了新的文献求助10
3秒前
wendy发布了新的文献求助10
3秒前
3秒前
3秒前
李爽完成签到 ,获得积分10
4秒前
微笑友容发布了新的文献求助10
4秒前
5秒前
乐观的海发布了新的文献求助10
5秒前
我先睡了发布了新的文献求助10
5秒前
Salt发布了新的文献求助10
5秒前
沁814发布了新的文献求助10
5秒前
大个应助牵绊采纳,获得10
6秒前
wlscj应助琪凯定理采纳,获得20
6秒前
Alex应助夜神月采纳,获得20
7秒前
星辰大海应助tttt采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
不倦应助拉长的念露采纳,获得10
9秒前
CC66发布了新的文献求助10
9秒前
cijing发布了新的文献求助10
10秒前
10秒前
10秒前
快乐小子发布了新的文献求助10
11秒前
11秒前
暮时完成签到 ,获得积分10
12秒前
12秒前
12秒前
ding应助标致曼荷采纳,获得10
12秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879