已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnostic accuracy of artificial intelligence assisted clinical imaging in the detection of oral potentially malignant disorders and oral cancer: A systematic review and meta-analysis

诊断优势比 医学 接收机工作特性 荟萃分析 曲线下面积 林地 癌症 优势比 诊断试验中的似然比 试验预测值 内科学 放射科
作者
Jingwen Li,Witold Kot,Colman McGrath,Bik Wan Amy Chan,Joshua W. K. Ho,Li Wu Zheng
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000001469
摘要

Background: The objective of this study is to examine the application of AI algorithms in detecting OPMD and oral cancerous lesions, and to evaluate the accuracy variations among different imaging tools employed in these diagnostic processes. Materials and methods: A systematic search was conducted in four databases: Embase, Web of Science, PubMed, and Scopus. The inclusion criteria included studies using machine learning algorithms to provide diagnostic information on specific oral lesions, prospective or retrospective design, and inclusion of OPMD. Sensitivity and specificity analyses were also required. Forest plots were generated to display overall diagnostic odds ratio (DOR), sensitivity, specificity, negative predictive values, and summary receiver operating characteristic (SROC) curves. Meta-regression analysis was conducted to examine potential differences among different imaging tools. Results: The overall DOR for AI-based screening of OPMD and oral mucosal cancerous lesions from normal mucosa was 68.438 (95%CI= [39.484, 118.623], I 2 = 86%). The area under the SROC curve was 0.938, indicating excellent diagnostic performance. AI-assisted screening showed a sensitivity of 89.9% (95%CI= [0.866,0.925]; I 2 = 81%), specificity of 89.2% (95%CI= [0.851,0.922], I2 = 79%), and a high negative predictive value of 89.5% (95%CI= [0.851; 0.927], I 2 = 96%). Meta-regression analysis revealed no significant difference among the three image tools. After generating a GOSH plot, the DOR was calculated to be 49.30, and the area under the SROC curve was 0.877. Additionally, sensitivity, specificity, and negative predictive value were 90.5% (95%CI [0.873,0.929], I 2 =4%), 87.0% (95%CI [0.813,0.912], I 2 =49%) and 90.1% (95%CI [0.860,0.931], I 2 =57%), respectively. Subgroup analysis showed that clinical photography had the highest diagnostic accuracy. Conclusions: AI-based detection using clinical photography shows a high diagnostic odds ratio and is easily accessible in the current era with billions of phone subscribers globally. This indicates that there is significant potential for AI to enhance the diagnostic capabilities of general practitioners to the level of specialists by utilizing clinical photographs, without the need for expensive specialized imaging equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MissLi完成签到,获得积分10
1秒前
完美世界应助HEROTREE采纳,获得10
2秒前
哈哈哈完成签到,获得积分20
2秒前
旺仔发布了新的文献求助10
3秒前
6秒前
10秒前
树藤完成签到,获得积分10
11秒前
12秒前
落后从阳完成签到,获得积分10
13秒前
mouxq发布了新的文献求助10
15秒前
十四发布了新的文献求助10
15秒前
HEROTREE发布了新的文献求助10
16秒前
善学以致用应助难过飞瑶采纳,获得10
16秒前
16秒前
烟花应助taoze采纳,获得10
20秒前
长毛象完成签到,获得积分10
21秒前
可爱的函函应助落后从阳采纳,获得10
25秒前
taoze完成签到,获得积分10
25秒前
CodeCraft应助xuex1采纳,获得10
28秒前
28秒前
晗月完成签到,获得积分10
30秒前
31秒前
31秒前
33秒前
33秒前
tengfei完成签到 ,获得积分10
37秒前
晓晗发布了新的文献求助10
37秒前
猪猪发布了新的文献求助10
37秒前
jolt完成签到,获得积分10
37秒前
37秒前
CHENNIAN发布了新的文献求助30
42秒前
43秒前
丘比特应助猪猪采纳,获得10
47秒前
48秒前
xuex1发布了新的文献求助10
49秒前
51秒前
shinn完成签到,获得积分10
52秒前
54秒前
xuex1完成签到,获得积分10
55秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268380
求助须知:如何正确求助?哪些是违规求助? 2907955
关于积分的说明 8343823
捐赠科研通 2578207
什么是DOI,文献DOI怎么找? 1401863
科研通“疑难数据库(出版商)”最低求助积分说明 655210
邀请新用户注册赠送积分活动 634350