Crop classification in Google Earth Engine: leveraging Sentinel-1, Sentinel-2, European CAP data, and object-based machine-learning approaches

计算机科学 作物 遥感 地质学 地理 林业
作者
Marco Vizzari,Giacomo Lesti,Siham Acharki
出处
期刊:Geo-spatial Information Science [Informa]
卷期号:: 1-16 被引量:4
标识
DOI:10.1080/10095020.2024.2341748
摘要

In contemporary agriculture and environmental management, the need for precise and accurate crop maps has never been more vital. Although object-based (OB) methods within Google Earth Engine (GEE) improve accuracy and output quality in contrast to pixel-based approaches, their application to crop classification remains relatively rare. Therefore, this study aimed to develop an OB classification methodology for crops located in central Italy's Lake Trasimeno area. This methodology employed spectral bands, spectral indices (Normalized Difference Vegetation Index and Modified Radar Vegetation Index), and textural information (Gray-Level Co-occurrence Matrix) derived from Sentinel-2 L2A (S2) and Sentinel-1 GRD (S1) data within the GEE platform. Moreover, European Common Agricultural Policy (CAP) data associated with cadastral parcels were employed and served as ground information during the training and validation stages. The CAP crop classes were aggregated into three levels (Level 1–3 crop types, Level 2–5 crop types, and Level 3–7 crop types). Subsequently, optimized Random Forest (RF) classifiers were applied to map crops effectively. Feature selection analysis highlighted the importance of certain textural features. Additionally, findings demonstrated high overall accuracy results (89% for Level 1, 86% for Level 2, and 82% for Level 3). It was found that winter crops achieved the highest F-score at Level 1, while specific subclasses, such as winter cereals and warm-season cereals, excelled at Level 2. Overall, this study provides a promising approach for improved crop mapping and precision agriculture in the GEE environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Survivor发布了新的文献求助30
3秒前
彪壮的慕山完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
hy完成签到 ,获得积分10
6秒前
十九发布了新的文献求助10
6秒前
6秒前
米饭给米饭的求助进行了留言
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
harriet chen发布了新的文献求助10
7秒前
秋刀鱼完成签到,获得积分10
7秒前
7秒前
友好的驳发布了新的文献求助10
7秒前
7秒前
Yuki发布了新的文献求助10
8秒前
8秒前
幻昼发布了新的文献求助10
8秒前
我好困完成签到,获得积分10
8秒前
9秒前
马小翠发布了新的文献求助10
9秒前
清浅发布了新的文献求助10
10秒前
SebastianW发布了新的文献求助10
10秒前
zho关闭了zho文献求助
10秒前
NoraZibelin2002应助BJ_whc采纳,获得30
10秒前
10秒前
11秒前
研友_bZzO08完成签到,获得积分10
12秒前
12秒前
传奇3应助冷泠凛采纳,获得10
12秒前
陈隆发布了新的文献求助10
12秒前
陈明健发布了新的文献求助10
12秒前
CHOSEN1发布了新的文献求助10
13秒前
康康发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667386
求助须知:如何正确求助?哪些是违规求助? 4885345
关于积分的说明 15119791
捐赠科研通 4826177
什么是DOI,文献DOI怎么找? 2583805
邀请新用户注册赠送积分活动 1537947
关于科研通互助平台的介绍 1496059