Crop classification in Google Earth Engine: leveraging Sentinel-1, Sentinel-2, European CAP data, and object-based machine-learning approaches

计算机科学 作物 遥感 地质学 地理 林业
作者
Marco Vizzari,Giacomo Lesti,Siham Acharki
出处
期刊:Geo-spatial Information Science [Informa]
卷期号:: 1-16 被引量:4
标识
DOI:10.1080/10095020.2024.2341748
摘要

In contemporary agriculture and environmental management, the need for precise and accurate crop maps has never been more vital. Although object-based (OB) methods within Google Earth Engine (GEE) improve accuracy and output quality in contrast to pixel-based approaches, their application to crop classification remains relatively rare. Therefore, this study aimed to develop an OB classification methodology for crops located in central Italy's Lake Trasimeno area. This methodology employed spectral bands, spectral indices (Normalized Difference Vegetation Index and Modified Radar Vegetation Index), and textural information (Gray-Level Co-occurrence Matrix) derived from Sentinel-2 L2A (S2) and Sentinel-1 GRD (S1) data within the GEE platform. Moreover, European Common Agricultural Policy (CAP) data associated with cadastral parcels were employed and served as ground information during the training and validation stages. The CAP crop classes were aggregated into three levels (Level 1–3 crop types, Level 2–5 crop types, and Level 3–7 crop types). Subsequently, optimized Random Forest (RF) classifiers were applied to map crops effectively. Feature selection analysis highlighted the importance of certain textural features. Additionally, findings demonstrated high overall accuracy results (89% for Level 1, 86% for Level 2, and 82% for Level 3). It was found that winter crops achieved the highest F-score at Level 1, while specific subclasses, such as winter cereals and warm-season cereals, excelled at Level 2. Overall, this study provides a promising approach for improved crop mapping and precision agriculture in the GEE environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
葡挞发布了新的文献求助10
2秒前
4秒前
5秒前
6秒前
6秒前
研友_nPol2L发布了新的文献求助10
7秒前
Ethan发布了新的文献求助10
7秒前
7秒前
纯2025留下了新的社区评论
7秒前
jingtan发布了新的文献求助10
8秒前
orixero应助你是龙也好采纳,获得10
9秒前
10秒前
liusui发布了新的文献求助10
10秒前
1234567xjy发布了新的文献求助10
10秒前
11秒前
QF发布了新的文献求助10
12秒前
Singularity应助初雪平寒采纳,获得10
12秒前
思睿拜发布了新的文献求助10
12秒前
14秒前
14秒前
Toxic完成签到 ,获得积分10
14秒前
14秒前
zz关闭了zz文献求助
17秒前
晒太阳的鱼完成签到 ,获得积分10
17秒前
原野小年发布了新的文献求助10
18秒前
小马甲应助刀光照亮黑夜采纳,获得10
18秒前
思睿拜完成签到,获得积分10
19秒前
21秒前
DK应助柯佳君采纳,获得10
22秒前
23秒前
23秒前
隐形曼青应助可靠的南霜采纳,获得10
23秒前
勤奋的灯完成签到 ,获得积分10
24秒前
momo发布了新的文献求助10
25秒前
Forward发布了新的文献求助10
25秒前
liusui完成签到 ,获得积分10
25秒前
布丁完成签到,获得积分10
25秒前
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138986
求助须知:如何正确求助?哪些是违规求助? 2789907
关于积分的说明 7793124
捐赠科研通 2446296
什么是DOI,文献DOI怎么找? 1301017
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096