Crop classification in Google Earth Engine: leveraging Sentinel-1, Sentinel-2, European CAP data, and object-based machine-learning approaches

计算机科学 作物 遥感 地质学 地理 林业
作者
Marco Vizzari,Giacomo Lesti,Siham Acharki
出处
期刊:Geo-spatial Information Science [Taylor & Francis]
卷期号:: 1-16 被引量:4
标识
DOI:10.1080/10095020.2024.2341748
摘要

In contemporary agriculture and environmental management, the need for precise and accurate crop maps has never been more vital. Although object-based (OB) methods within Google Earth Engine (GEE) improve accuracy and output quality in contrast to pixel-based approaches, their application to crop classification remains relatively rare. Therefore, this study aimed to develop an OB classification methodology for crops located in central Italy's Lake Trasimeno area. This methodology employed spectral bands, spectral indices (Normalized Difference Vegetation Index and Modified Radar Vegetation Index), and textural information (Gray-Level Co-occurrence Matrix) derived from Sentinel-2 L2A (S2) and Sentinel-1 GRD (S1) data within the GEE platform. Moreover, European Common Agricultural Policy (CAP) data associated with cadastral parcels were employed and served as ground information during the training and validation stages. The CAP crop classes were aggregated into three levels (Level 1–3 crop types, Level 2–5 crop types, and Level 3–7 crop types). Subsequently, optimized Random Forest (RF) classifiers were applied to map crops effectively. Feature selection analysis highlighted the importance of certain textural features. Additionally, findings demonstrated high overall accuracy results (89% for Level 1, 86% for Level 2, and 82% for Level 3). It was found that winter crops achieved the highest F-score at Level 1, while specific subclasses, such as winter cereals and warm-season cereals, excelled at Level 2. Overall, this study provides a promising approach for improved crop mapping and precision agriculture in the GEE environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
灰灰完成签到 ,获得积分10
1秒前
maomao完成签到,获得积分10
1秒前
1秒前
楚舜华完成签到,获得积分10
1秒前
2秒前
111发布了新的文献求助10
2秒前
2秒前
Jess完成签到,获得积分10
3秒前
木心应助南宫清涟采纳,获得20
3秒前
橙色小瓶子完成签到,获得积分10
3秒前
3秒前
Michael_li完成签到,获得积分10
3秒前
领导范儿应助A2150530290采纳,获得10
3秒前
跳跃毒娘发布了新的文献求助10
3秒前
深情安青应助yn采纳,获得10
4秒前
4秒前
4秒前
六便士在攒完成签到,获得积分10
4秒前
黑加仑发布了新的文献求助10
4秒前
SciGPT应助hanzhou1314采纳,获得30
5秒前
gxmu6322发布了新的文献求助10
5秒前
烟花应助极地东风采纳,获得10
6秒前
6秒前
6秒前
ABBYTHU18完成签到,获得积分10
7秒前
ilk666完成签到,获得积分10
7秒前
复杂便当发布了新的文献求助10
7秒前
7秒前
jiaru发布了新的文献求助10
7秒前
7秒前
wangye完成签到,获得积分10
8秒前
欧阳振应助雪白葵阴采纳,获得10
8秒前
gll206发布了新的文献求助10
9秒前
书羽完成签到,获得积分0
9秒前
江江完成签到,获得积分10
9秒前
赘婿应助123采纳,获得10
10秒前
知了发布了新的文献求助10
10秒前
敏感初露完成签到,获得积分10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582