双金属片
催化作用
苯乙烯
选择性
化学
离解(化学)
路易斯酸
吸附
药物化学
兴奋剂
无机化学
物理化学
有机化学
材料科学
光电子学
聚合物
共聚物
作者
Yi‐Ran Du,Rui Wang,Q. Jason Niu,Yi-Yu Tao,Bao‐Hua Xu
标识
DOI:10.1016/j.cej.2024.151020
摘要
In this study, the bimetallic RuM-CeO2 (M = Ni, Fe, Cu, K and Cs) catalysts were facilely fabricated by taking the commercially available CeO2 (99.95 % metals basis, Aladdin, < 50 nm of diameter) as the support. They displayed distinct catalytic performance, especially the chemo-selectivity, on the methoxycarbonylation of styrene with CO and CH3OH. Impressively, Ru2Ni0.6-CeO2 provided an up to 90.1 % yield of methyl phenylpropionate with satisfied linear selectivity (L/B = 91/9). The characterization and mechanistic results demonstrated that the doping of proper amount of Ni species enriches the local oxygen vacancy (Vö) at the surface but slightly reduces the charge at Ru sites, thereby modulating the interfacial Lewis acid − base pair (Ru-O-Ce-Vö) for catalysis. It thus enhances the CH3OH dissociation, leading to high coverage of OCH3 species with low adsorption energy and relatively weak acidity. Further, the insertion of CO becomes readily due to the weak Ru-CO affinity at electron-deficient Ru center therein. As such, the apparent activation energies (Ea) of styrene methoxycarbonylation over Ru2-CeO2 (71.2 kJ mol−1) is nearly half-reduced by doping Ni element (Ru2Ni0.6-CeO2: 37.5 kJ mol−1). Meanwhile, the competitive side reactions at the surface of Ru2Ni0.6-CeO2 is inhibited without sufficient acid strength and acid sites. Both aromatic olefins and cyclic olefins were well tolerated under such a system.
科研通智能强力驱动
Strongly Powered by AbleSci AI