Development and External Validation of Machine Learning Models for Diabetic Microvascular Complications: Cross-Sectional Study With Metabolites

医学 糖尿病 横断面研究 内科学 交叉验证 计算机科学 人工智能 机器学习 内分泌学 病理
作者
Feng He,Clarissa Ng Yin Ling,Simon Nusinovici,Ching‐Yu Cheng,Tien‐Yin Wong,Jialiang Li,Charumathi Sabanayagam
出处
期刊:Journal of Medical Internet Research 卷期号:26: e41065-e41065
标识
DOI:10.2196/41065
摘要

Background Diabetic kidney disease (DKD) and diabetic retinopathy (DR) are major diabetic microvascular complications, contributing significantly to morbidity, disability, and mortality worldwide. The kidney and the eye, having similar microvascular structures and physiological and pathogenic features, may experience similar metabolic changes in diabetes. Objective This study aimed to use machine learning (ML) methods integrated with metabolic data to identify biomarkers associated with DKD and DR in a multiethnic Asian population with diabetes, as well as to improve the performance of DKD and DR detection models beyond traditional risk factors. Methods We used ML algorithms (logistic regression [LR] with Least Absolute Shrinkage and Selection Operator and gradient-boosting decision tree) to analyze 2772 adults with diabetes from the Singapore Epidemiology of Eye Diseases study, a population-based cross-sectional study conducted in Singapore (2004-2011). From 220 circulating metabolites and 19 risk factors, we selected the most important variables associated with DKD (defined as an estimated glomerular filtration rate <60 mL/min/1.73 m2) and DR (defined as an Early Treatment Diabetic Retinopathy Study severity level ≥20). DKD and DR detection models were developed based on the variable selection results and externally validated on a sample of 5843 participants with diabetes from the UK biobank (2007-2010). Machine-learned model performance (area under the receiver operating characteristic curve [AUC] with 95% CI, sensitivity, and specificity) was compared to that of traditional LR adjusted for age, sex, diabetes duration, hemoglobin A1c, systolic blood pressure, and BMI. Results Singapore Epidemiology of Eye Diseases participants had a median age of 61.7 (IQR 53.5-69.4) years, with 49.1% (1361/2772) being women, 20.2% (555/2753) having DKD, and 25.4% (685/2693) having DR. UK biobank participants had a median age of 61.0 (IQR 55.0-65.0) years, with 35.8% (2090/5843) being women, 6.7% (374/5570) having DKD, and 6.1% (355/5843) having DR. The ML algorithms identified diabetes duration, insulin usage, age, and tyrosine as the most important factors of both DKD and DR. DKD was additionally associated with cardiovascular disease history, antihypertensive medication use, and 3 metabolites (lactate, citrate, and cholesterol esters to total lipids ratio in intermediate-density lipoprotein), while DR was additionally associated with hemoglobin A1c, blood glucose, pulse pressure, and alanine. Machine-learned models for DKD and DR detection outperformed traditional LR models in both internal (AUC 0.838 vs 0.743 for DKD and 0.790 vs 0.764 for DR) and external validation (AUC 0.791 vs 0.691 for DKD and 0.778 vs 0.760 for DR). Conclusions This study highlighted diabetes duration, insulin usage, age, and circulating tyrosine as important factors in detecting DKD and DR. The integration of ML with biomedical big data enables biomarker discovery and improves disease detection beyond traditional risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静碧灵完成签到,获得积分10
刚刚
1秒前
能干的孤风完成签到,获得积分10
2秒前
2秒前
顺心雨双发布了新的文献求助10
4秒前
深情安青应助Jerry采纳,获得10
5秒前
5秒前
568923发布了新的文献求助10
8秒前
科研通AI2S应助Komolika采纳,获得10
9秒前
逄锦国发布了新的文献求助30
10秒前
Owen应助yyy采纳,获得10
12秒前
13秒前
TYY完成签到,获得积分10
14秒前
奋斗的龙鹊完成签到,获得积分10
17秒前
陈奈何发布了新的文献求助10
19秒前
炖地瓜发布了新的文献求助10
21秒前
22秒前
bbo完成签到,获得积分10
23秒前
23秒前
24秒前
大个应助岁月轮回采纳,获得10
25秒前
orixero应助guozizi采纳,获得50
26秒前
炼丹发布了新的文献求助10
26秒前
27秒前
Jerry发布了新的文献求助10
27秒前
28秒前
lxk666完成签到,获得积分10
29秒前
王电催化发布了新的文献求助20
30秒前
30秒前
ceeray23应助wzy5508采纳,获得10
31秒前
少年愁完成签到,获得积分10
31秒前
天天向上完成签到,获得积分10
31秒前
32秒前
32秒前
江洋大盗发布了新的文献求助10
33秒前
我很懵逼发布了新的文献求助10
34秒前
gtx完成签到 ,获得积分10
35秒前
chenshi0515发布了新的文献求助10
35秒前
holi发布了新的文献求助10
36秒前
36秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433751
求助须知:如何正确求助?哪些是违规求助? 3030966
关于积分的说明 8940334
捐赠科研通 2719011
什么是DOI,文献DOI怎么找? 1491613
科研通“疑难数据库(出版商)”最低求助积分说明 689331
邀请新用户注册赠送积分活动 685455