Fusing multi-scale fMRI features using a brain-inspired multi-channel graph neural network for major depressive disorder diagnosis

计算机科学 重性抑郁障碍 人工智能 图形 机器学习 认知心理学 心理学 认知 精神科 理论计算机科学
作者
Shuai Liu,Renzhou Gui
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105837-105837 被引量:2
标识
DOI:10.1016/j.bspc.2023.105837
摘要

Depression stands as one of the most pernicious mental disorders in contemporary society, characterized by a highly intricate pathological mechanism. Specifically, individuals suffering from Major Depressive Disorder (MDD) exhibit heightened vulnerability to suicidal tendencies. Currently, healthcare practitioners often encounter challenges related to the misdiagnosis and underdiagnosis of depression during clinical assessments. Consequently, it is of paramount importance to develop highly accurate auxiliary diagnostic tools for depression. Unfortunately, traditional machine learning and deep learning methodologies frequently neglect the integration of multi-source data and disregard the intricate topological structure and high-order attributes of brain networks. In this study, a multi-scale feature fusion classification framework is proposed to distinguish between MDD patients and healthy controls. Within the proposed model, a novel method, the Cross-Level High-Order Interaction (CLHOI), is introduced and implemented on a low-order functional connectivity (LOFC) matrix to derive two distinct high-order functional connectivity (HOFC) matrices. Subsequently, a Multi-Channel Fusion Graph Convolutional Network (MFGCN) is trained by integrating high-order and low-order brain graph features along with phenotypic information. The results of 10-fold cross-validation experiments conducted on the publicly available REST-meta-MDD dataset indicate that the fusion of multi-scale features improves the average accuracy by approximately 3%, resulting in an accuracy rate of 77.6%. Simultaneously, the hypothesis asserting the existence of intricate information interactions at various levels within brain connectivity networks is validated. Moreover, our model exhibits strong explanatory capabilities, effectively identifying brain regions closely associated with MDD, including the Precentral gyrus, Superior frontal gyrus, Cuneus, Lingual gyrus, and Fusiform gyrus. In comparison to numerous advanced studies within the same domain, our approach has produced competitive results. Furthermore, our proposed method can be readily extended to facilitate the diagnosis of various neurological diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助缺水哥采纳,获得10
刚刚
wsqg123发布了新的文献求助10
2秒前
帅气小霜完成签到,获得积分10
2秒前
鸢尾松茶完成签到 ,获得积分10
2秒前
湖里发布了新的文献求助50
3秒前
hfhkjh发布了新的文献求助10
3秒前
狠欧克发布了新的文献求助10
4秒前
4秒前
小禾发布了新的文献求助10
6秒前
6秒前
机智的小懒虫完成签到 ,获得积分10
7秒前
科研通AI2S应助lyh采纳,获得10
7秒前
余xinxin完成签到,获得积分10
9秒前
619805092完成签到,获得积分10
10秒前
筝zheng关注了科研通微信公众号
10秒前
呵呵哒发布了新的文献求助10
10秒前
11秒前
ZZ发布了新的文献求助30
11秒前
顾矜应助dicy1232003采纳,获得10
12秒前
尚可完成签到 ,获得积分10
12秒前
JamesPei应助阿橘采纳,获得10
13秒前
Smith.w发布了新的文献求助10
13秒前
杳鸢应助淼吉采纳,获得10
16秒前
呵呵哒完成签到,获得积分10
17秒前
hfhkjh完成签到,获得积分10
17秒前
21秒前
21秒前
Junrong应助机智采纳,获得10
22秒前
23秒前
24秒前
25秒前
25秒前
义气绿柳发布了新的文献求助10
25秒前
26秒前
dicy1232003发布了新的文献求助10
26秒前
Hello应助簪花带酒采纳,获得30
26秒前
筝zheng发布了新的文献求助10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
8R60d8应助科研通管家采纳,获得10
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877036
关于积分的说明 8197538
捐赠科研通 2544353
什么是DOI,文献DOI怎么找? 1374356
科研通“疑难数据库(出版商)”最低求助积分说明 646935
邀请新用户注册赠送积分活动 621742