亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fusing multi-scale fMRI features using a brain-inspired multi-channel graph neural network for major depressive disorder diagnosis

计算机科学 重性抑郁障碍 人工智能 图形 机器学习 认知心理学 心理学 认知 精神科 理论计算机科学
作者
Shuai Liu,Renzhou Gui
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105837-105837 被引量:5
标识
DOI:10.1016/j.bspc.2023.105837
摘要

Depression stands as one of the most pernicious mental disorders in contemporary society, characterized by a highly intricate pathological mechanism. Specifically, individuals suffering from Major Depressive Disorder (MDD) exhibit heightened vulnerability to suicidal tendencies. Currently, healthcare practitioners often encounter challenges related to the misdiagnosis and underdiagnosis of depression during clinical assessments. Consequently, it is of paramount importance to develop highly accurate auxiliary diagnostic tools for depression. Unfortunately, traditional machine learning and deep learning methodologies frequently neglect the integration of multi-source data and disregard the intricate topological structure and high-order attributes of brain networks. In this study, a multi-scale feature fusion classification framework is proposed to distinguish between MDD patients and healthy controls. Within the proposed model, a novel method, the Cross-Level High-Order Interaction (CLHOI), is introduced and implemented on a low-order functional connectivity (LOFC) matrix to derive two distinct high-order functional connectivity (HOFC) matrices. Subsequently, a Multi-Channel Fusion Graph Convolutional Network (MFGCN) is trained by integrating high-order and low-order brain graph features along with phenotypic information. The results of 10-fold cross-validation experiments conducted on the publicly available REST-meta-MDD dataset indicate that the fusion of multi-scale features improves the average accuracy by approximately 3%, resulting in an accuracy rate of 77.6%. Simultaneously, the hypothesis asserting the existence of intricate information interactions at various levels within brain connectivity networks is validated. Moreover, our model exhibits strong explanatory capabilities, effectively identifying brain regions closely associated with MDD, including the Precentral gyrus, Superior frontal gyrus, Cuneus, Lingual gyrus, and Fusiform gyrus. In comparison to numerous advanced studies within the same domain, our approach has produced competitive results. Furthermore, our proposed method can be readily extended to facilitate the diagnosis of various neurological diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
long发布了新的文献求助30
7秒前
7秒前
袁梦完成签到,获得积分10
12秒前
袁梦发布了新的文献求助10
18秒前
23秒前
科研通AI6应助刘坤选采纳,获得10
26秒前
VDC应助科研通管家采纳,获得30
31秒前
SciGPT应助科研通管家采纳,获得50
31秒前
VDC应助科研通管家采纳,获得30
31秒前
丁浩伦应助科研通管家采纳,获得10
31秒前
38秒前
失眠语蓉发布了新的文献求助10
40秒前
41秒前
科研通AI5应助星沐易采纳,获得10
42秒前
44秒前
47秒前
zzz完成签到,获得积分10
47秒前
51秒前
51秒前
乐观怀亦发布了新的文献求助10
52秒前
53秒前
55秒前
粥粥发布了新的文献求助10
56秒前
粥粥发布了新的文献求助10
56秒前
粥粥发布了新的文献求助10
56秒前
57秒前
在学海中挣扎完成签到 ,获得积分10
57秒前
粥粥发布了新的文献求助10
58秒前
粥粥发布了新的文献求助10
58秒前
1分钟前
气球好饿完成签到 ,获得积分10
1分钟前
1分钟前
失眠语蓉完成签到,获得积分20
1分钟前
LIFE2020完成签到 ,获得积分10
1分钟前
丧彪发布了新的文献求助150
1分钟前
星沐易发布了新的文献求助10
1分钟前
long完成签到,获得积分20
1分钟前
科研通AI6应助乐观怀亦采纳,获得10
1分钟前
刘坤选发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581801
求助须知:如何正确求助?哪些是违规求助? 3999641
关于积分的说明 12381493
捐赠科研通 3674374
什么是DOI,文献DOI怎么找? 2024917
邀请新用户注册赠送积分活动 1058802
科研通“疑难数据库(出版商)”最低求助积分说明 945566