Fusing multi-scale fMRI features using a brain-inspired multi-channel graph neural network for major depressive disorder diagnosis

计算机科学 重性抑郁障碍 人工智能 图形 机器学习 认知心理学 心理学 认知 精神科 理论计算机科学
作者
Shuai Liu,Renzhou Gui
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105837-105837 被引量:2
标识
DOI:10.1016/j.bspc.2023.105837
摘要

Depression stands as one of the most pernicious mental disorders in contemporary society, characterized by a highly intricate pathological mechanism. Specifically, individuals suffering from Major Depressive Disorder (MDD) exhibit heightened vulnerability to suicidal tendencies. Currently, healthcare practitioners often encounter challenges related to the misdiagnosis and underdiagnosis of depression during clinical assessments. Consequently, it is of paramount importance to develop highly accurate auxiliary diagnostic tools for depression. Unfortunately, traditional machine learning and deep learning methodologies frequently neglect the integration of multi-source data and disregard the intricate topological structure and high-order attributes of brain networks. In this study, a multi-scale feature fusion classification framework is proposed to distinguish between MDD patients and healthy controls. Within the proposed model, a novel method, the Cross-Level High-Order Interaction (CLHOI), is introduced and implemented on a low-order functional connectivity (LOFC) matrix to derive two distinct high-order functional connectivity (HOFC) matrices. Subsequently, a Multi-Channel Fusion Graph Convolutional Network (MFGCN) is trained by integrating high-order and low-order brain graph features along with phenotypic information. The results of 10-fold cross-validation experiments conducted on the publicly available REST-meta-MDD dataset indicate that the fusion of multi-scale features improves the average accuracy by approximately 3%, resulting in an accuracy rate of 77.6%. Simultaneously, the hypothesis asserting the existence of intricate information interactions at various levels within brain connectivity networks is validated. Moreover, our model exhibits strong explanatory capabilities, effectively identifying brain regions closely associated with MDD, including the Precentral gyrus, Superior frontal gyrus, Cuneus, Lingual gyrus, and Fusiform gyrus. In comparison to numerous advanced studies within the same domain, our approach has produced competitive results. Furthermore, our proposed method can be readily extended to facilitate the diagnosis of various neurological diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyrie完成签到,获得积分10
刚刚
彭于晏应助HHH采纳,获得10
1秒前
该饮茶了发布了新的文献求助10
2秒前
2秒前
2秒前
皓民发布了新的文献求助10
3秒前
上官若男应助aby采纳,获得10
3秒前
所所应助心外科医生采纳,获得20
3秒前
3秒前
chel完成签到,获得积分20
3秒前
lalala发布了新的文献求助10
4秒前
4秒前
5秒前
旅行者发布了新的文献求助10
6秒前
Brot_12发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
威武香水应助七七采纳,获得10
8秒前
暮葵发布了新的文献求助10
8秒前
HHH发布了新的文献求助10
9秒前
香蕉觅云应助寒月如雪采纳,获得10
11秒前
lwlwlw发布了新的文献求助10
11秒前
czh应助xzy998采纳,获得10
11秒前
xctdyl1992发布了新的文献求助10
12秒前
xyx完成签到,获得积分20
12秒前
sunliying完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
星辰大海应助charles采纳,获得10
15秒前
17秒前
活泼的石头完成签到,获得积分10
17秒前
ddd发布了新的文献求助10
17秒前
失眠书蝶完成签到 ,获得积分10
18秒前
老王完成签到,获得积分10
18秒前
19秒前
曾宪俊发布了新的文献求助10
19秒前
小小周发布了新的文献求助10
20秒前
坦率的匪应助雪山飞龙采纳,获得10
20秒前
神勇的秋完成签到,获得积分10
20秒前
dbl完成签到,获得积分10
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160