A Simplified Approach to Recognize Vortex-Induced Vibration Response Using Machine Learning

风洞 空气动力学 振动 人工神经网络 Lift(数据挖掘) 聚类分析 工程类 结构工程 计算机科学 人工智能 机器学习 航空航天工程 声学 物理
作者
Zhengxi Yan,Shixiong Zheng,Fengfan Yang,Xueyang Tai,Zhiqiang Chen
出处
期刊:Structural Engineering International [Informa]
卷期号:: 1-13 被引量:4
标识
DOI:10.1080/10168664.2023.2287460
摘要

The vortex-induced vibration (VIV) problem has been of critical concern for the wind-resistance of long-span bridges. Usually there are four types of approach for VIV studies: wind tunnel tests, field monitoring, computational fluid dynamics and mathematical models. However, traditional approaches have shown some limitations, such as high cost and low efficiency. In order to improve the efficiency and accuracy of VIV studies, this article has taken the VIV problem of a split three-box girder in a cable-stayed and cooperative suspension system bridge as an instance, and conducted a series of VIV wind tunnel tests. An approach based on machine learning is described that is able to serve as a complement to the wind tunnel tests. The proposed approach involves two steps: firstly, based on the dataset produced by wind tunnel tests, a clustering algorithm is introduced to separate the VIV signals automatically from other vibrations. Then, an artificial neural network is utilized to recognize the VIV response and aerodynamic force in the lock-in region directly. It is shown that the clustering algorithm can be a good tool for the recognition of VIV signals. Moreover, the proposed artificial neural network models show good ability for recognizing VIV amplitude and aerodynamic lift force.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dawei发布了新的文献求助10
1秒前
YH2完成签到,获得积分10
1秒前
代代代代完成签到,获得积分10
2秒前
夏天应助笑鱼采纳,获得30
3秒前
yyyy完成签到 ,获得积分10
3秒前
香蕉觅云应助年轻鲜花采纳,获得10
3秒前
3秒前
Akim应助何大青采纳,获得10
5秒前
华仔应助mukou采纳,获得10
5秒前
asdfrfg发布了新的文献求助10
5秒前
5秒前
林林发布了新的文献求助10
6秒前
7秒前
梁三柏应助科研通管家采纳,获得10
7秒前
大脚丫发布了新的文献求助10
7秒前
梁三柏应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
8秒前
梁三柏应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
zhh完成签到,获得积分10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
cheng应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
wenying完成签到,获得积分10
9秒前
ms发布了新的文献求助10
9秒前
七一藕完成签到,获得积分10
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558083
求助须知:如何正确求助?哪些是违规求助? 3133203
关于积分的说明 9401074
捐赠科研通 2833299
什么是DOI,文献DOI怎么找? 1557421
邀请新用户注册赠送积分活动 727253
科研通“疑难数据库(出版商)”最低求助积分说明 716257