Backdoor Attacks with Wavelet Embedding: Revealing and enhancing the insights of vulnerabilities in visual object detection models on transformers within digital twin systems

后门 小波 计算机科学 人工智能 嵌入 计算机视觉 计算机安全 数字水印 图像(数学)
作者
Meili Shen,Ruwei Huang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102355-102355 被引量:3
标识
DOI:10.1016/j.aei.2024.102355
摘要

Given the pervasive use of deep learning models across various domains, ensuring model security has emerged as a critical concern. This paper examines backdoor attacks, a form of security threat that compromises model output by poisoning the training data. Our investigation specifically addresses backdoor attacks on object detection models, vital for security-sensitive applications like autonomous driving and smart city systems. Consequently, such attacks on object detection models could pose significant risks to human life and property. Consequently, backdoor attacks on object detection could pose serious threats to human life and property. To elucidate this security risk, we propose and experimentally evaluate five backdoor attack methods for object detection models. The key findings are: (1) Unnecessary Object Generation: a globally embedded trigger creating false objects in the target class; (2) Partial Misclassification: a trigger causing specific class misclassification; (3) Global Misclassification: a trigger reclassifying all objects into the target class; (4) Specific Object Vanishing: a trigger causing non-detection of certain objects; (5) Object Position Shifting: a trigger causing bounding box shifts for a specific class. To assess attack effectiveness, we introduced the Attack Success Rate (ASR), which can surpass 1 in object detection tasks, thus providing a more accurate reflection of the attack impact. Experimental outcomes indicate that the ASR values of these varied backdoor attacks frequently approach or surpass 1, demonstrating our method's capacity to impact multiple objects simultaneously. Additionally, to augment trigger stealth, we introduce Backdoor Attack with Wavelet Embedding (BAWE), which discreetly embeds triggers as image watermarks in training data. This embedding method yields more natural triggers with enhanced stealth. Highly stealthy triggers are less detectable, significantly increasing the likelihood of attack success and efficacy. We have developed a Transformer-based network architecture, diverging from traditional neural network frameworks. Our experiments across various object detection datasets highlight the susceptibility of these models and the high success rate of our approaches. This vulnerability poses significant risks to digital twin systems utilizing object detection technology. Our methodology not only enhances trigger stealth but also suits dense predictive tasks and circumvents current neural network backdoor attack detection methods. The experimental findings expose key challenges in the security of object detection models, particularly when integrated with digital twins, offering new avenues for backdoor attack research and foundational insights for devising defense strategies against these attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃肥牛完成签到,获得积分10
1秒前
張肉肉完成签到,获得积分10
1秒前
月月完成签到,获得积分10
2秒前
默默懿轩完成签到,获得积分10
2秒前
赵王关注了科研通微信公众号
2秒前
勤劳樱完成签到,获得积分10
2秒前
小阿哲完成签到 ,获得积分10
2秒前
虾皮相片完成签到,获得积分20
3秒前
Rui完成签到 ,获得积分10
3秒前
贤惠的饼干完成签到,获得积分10
3秒前
清飞应助啦啦啦采纳,获得10
3秒前
丘比特应助杰小瑞采纳,获得10
3秒前
lor发布了新的文献求助10
3秒前
gossie完成签到,获得积分10
3秒前
Mc摆摆源完成签到,获得积分20
3秒前
4秒前
菠萝吹雪完成签到,获得积分10
4秒前
4秒前
拼搏的飞薇完成签到,获得积分10
4秒前
Ava应助缓慢钢笔采纳,获得10
5秒前
在北极寻找食物的企鹅完成签到,获得积分10
5秒前
微光完成签到,获得积分10
5秒前
旰旰旰完成签到,获得积分10
6秒前
菜菜完成签到,获得积分10
6秒前
王小磊完成签到,获得积分10
6秒前
7秒前
桐桐应助坚定的向雪采纳,获得10
7秒前
laber应助禹无极采纳,获得50
7秒前
李爱国应助咖啡质感采纳,获得10
7秒前
Serena完成签到 ,获得积分10
7秒前
8秒前
核桃发布了新的文献求助10
8秒前
耍酷小松鼠完成签到,获得积分10
8秒前
8秒前
墨染书香发布了新的文献求助10
8秒前
一个兴趣使然的人完成签到,获得积分10
9秒前
zcious完成签到,获得积分10
9秒前
小谭完成签到 ,获得积分10
9秒前
9秒前
所所应助子卿采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664967
求助须知:如何正确求助?哪些是违规求助? 4873787
关于积分的说明 15110464
捐赠科研通 4824067
什么是DOI,文献DOI怎么找? 2582622
邀请新用户注册赠送积分活动 1536541
关于科研通互助平台的介绍 1495147