Backdoor Attacks with Wavelet Embedding: Revealing and enhancing the insights of vulnerabilities in visual object detection models on transformers within digital twin systems

后门 小波 计算机科学 人工智能 嵌入 计算机视觉 计算机安全 数字水印 图像(数学)
作者
Meili Shen,Ruwei Huang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:60: 102355-102355 被引量:3
标识
DOI:10.1016/j.aei.2024.102355
摘要

Given the pervasive use of deep learning models across various domains, ensuring model security has emerged as a critical concern. This paper examines backdoor attacks, a form of security threat that compromises model output by poisoning the training data. Our investigation specifically addresses backdoor attacks on object detection models, vital for security-sensitive applications like autonomous driving and smart city systems. Consequently, such attacks on object detection models could pose significant risks to human life and property. Consequently, backdoor attacks on object detection could pose serious threats to human life and property. To elucidate this security risk, we propose and experimentally evaluate five backdoor attack methods for object detection models. The key findings are: (1) Unnecessary Object Generation: a globally embedded trigger creating false objects in the target class; (2) Partial Misclassification: a trigger causing specific class misclassification; (3) Global Misclassification: a trigger reclassifying all objects into the target class; (4) Specific Object Vanishing: a trigger causing non-detection of certain objects; (5) Object Position Shifting: a trigger causing bounding box shifts for a specific class. To assess attack effectiveness, we introduced the Attack Success Rate (ASR), which can surpass 1 in object detection tasks, thus providing a more accurate reflection of the attack impact. Experimental outcomes indicate that the ASR values of these varied backdoor attacks frequently approach or surpass 1, demonstrating our method's capacity to impact multiple objects simultaneously. Additionally, to augment trigger stealth, we introduce Backdoor Attack with Wavelet Embedding (BAWE), which discreetly embeds triggers as image watermarks in training data. This embedding method yields more natural triggers with enhanced stealth. Highly stealthy triggers are less detectable, significantly increasing the likelihood of attack success and efficacy. We have developed a Transformer-based network architecture, diverging from traditional neural network frameworks. Our experiments across various object detection datasets highlight the susceptibility of these models and the high success rate of our approaches. This vulnerability poses significant risks to digital twin systems utilizing object detection technology. Our methodology not only enhances trigger stealth but also suits dense predictive tasks and circumvents current neural network backdoor attack detection methods. The experimental findings expose key challenges in the security of object detection models, particularly when integrated with digital twins, offering new avenues for backdoor attack research and foundational insights for devising defense strategies against these attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
1秒前
铃木发布了新的文献求助10
2秒前
科研通AI5应助无聊的小蕾采纳,获得10
2秒前
端庄向雁发布了新的文献求助10
4秒前
cc发布了新的文献求助10
5秒前
6秒前
天天快乐应助Balance Man采纳,获得10
6秒前
A_T_O_M_I_C发布了新的文献求助10
6秒前
隐形曼青应助ikun采纳,获得10
7秒前
浮游应助墨鱼大王采纳,获得10
8秒前
夙生缘起完成签到,获得积分20
8秒前
8秒前
10秒前
量子星尘发布了新的文献求助30
10秒前
搜集达人应助yixifu采纳,获得10
10秒前
李健应助fqf采纳,获得10
11秒前
柠檬发布了新的文献求助10
12秒前
12秒前
sunqian完成签到,获得积分10
12秒前
我是老大应助一小盆芦荟采纳,获得10
12秒前
13秒前
林黛玉完成签到 ,获得积分10
13秒前
13秒前
饼干碎发布了新的文献求助10
15秒前
Jerrylove发布了新的文献求助50
16秒前
forest完成签到,获得积分10
16秒前
温存发布了新的文献求助10
17秒前
小马甲应助哈哈哈嗝采纳,获得10
19秒前
19秒前
红茶猫完成签到,获得积分10
20秒前
完美世界应助玖爱采纳,获得10
21秒前
21秒前
肉丝儿完成签到,获得积分10
22秒前
王小磊完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助30
23秒前
23秒前
饼干碎完成签到,获得积分10
24秒前
24秒前
浮游应助xgx984采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941338
求助须知:如何正确求助?哪些是违规求助? 4207362
关于积分的说明 13077414
捐赠科研通 3986186
什么是DOI,文献DOI怎么找? 2182512
邀请新用户注册赠送积分活动 1198073
关于科研通互助平台的介绍 1110368