亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Backdoor Attacks with Wavelet Embedding: Revealing and enhancing the insights of vulnerabilities in visual object detection models on transformers within digital twin systems

后门 小波 计算机科学 人工智能 嵌入 计算机视觉 计算机安全 数字水印 图像(数学)
作者
Meili Shen,Ruwei Huang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102355-102355 被引量:3
标识
DOI:10.1016/j.aei.2024.102355
摘要

Given the pervasive use of deep learning models across various domains, ensuring model security has emerged as a critical concern. This paper examines backdoor attacks, a form of security threat that compromises model output by poisoning the training data. Our investigation specifically addresses backdoor attacks on object detection models, vital for security-sensitive applications like autonomous driving and smart city systems. Consequently, such attacks on object detection models could pose significant risks to human life and property. Consequently, backdoor attacks on object detection could pose serious threats to human life and property. To elucidate this security risk, we propose and experimentally evaluate five backdoor attack methods for object detection models. The key findings are: (1) Unnecessary Object Generation: a globally embedded trigger creating false objects in the target class; (2) Partial Misclassification: a trigger causing specific class misclassification; (3) Global Misclassification: a trigger reclassifying all objects into the target class; (4) Specific Object Vanishing: a trigger causing non-detection of certain objects; (5) Object Position Shifting: a trigger causing bounding box shifts for a specific class. To assess attack effectiveness, we introduced the Attack Success Rate (ASR), which can surpass 1 in object detection tasks, thus providing a more accurate reflection of the attack impact. Experimental outcomes indicate that the ASR values of these varied backdoor attacks frequently approach or surpass 1, demonstrating our method's capacity to impact multiple objects simultaneously. Additionally, to augment trigger stealth, we introduce Backdoor Attack with Wavelet Embedding (BAWE), which discreetly embeds triggers as image watermarks in training data. This embedding method yields more natural triggers with enhanced stealth. Highly stealthy triggers are less detectable, significantly increasing the likelihood of attack success and efficacy. We have developed a Transformer-based network architecture, diverging from traditional neural network frameworks. Our experiments across various object detection datasets highlight the susceptibility of these models and the high success rate of our approaches. This vulnerability poses significant risks to digital twin systems utilizing object detection technology. Our methodology not only enhances trigger stealth but also suits dense predictive tasks and circumvents current neural network backdoor attack detection methods. The experimental findings expose key challenges in the security of object detection models, particularly when integrated with digital twins, offering new avenues for backdoor attack research and foundational insights for devising defense strategies against these attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
kouxinyao完成签到 ,获得积分10
13秒前
13秒前
17秒前
zakaria发布了新的文献求助10
27秒前
顾矜应助光轮2000采纳,获得10
33秒前
33秒前
43秒前
光轮2000发布了新的文献求助10
49秒前
111完成签到 ,获得积分20
50秒前
Joceelyn完成签到,获得积分10
56秒前
完美的海完成签到 ,获得积分10
59秒前
59秒前
Alice完成签到 ,获得积分10
1分钟前
清欢小适完成签到 ,获得积分10
1分钟前
聪明夏波完成签到 ,获得积分20
1分钟前
光轮2000发布了新的文献求助10
1分钟前
两只棚猫完成签到,获得积分10
1分钟前
牛马完成签到 ,获得积分10
1分钟前
1分钟前
朱摩玑发布了新的文献求助10
1分钟前
orixero应助光轮2000采纳,获得10
1分钟前
zakaria完成签到,获得积分10
1分钟前
2分钟前
光轮2000发布了新的文献求助10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
英俊的铭应助光轮2000采纳,获得10
2分钟前
鲜橙完成签到 ,获得积分10
2分钟前
NEKO发布了新的文献求助10
2分钟前
nuture完成签到 ,获得积分10
2分钟前
康康XY完成签到 ,获得积分10
2分钟前
丘比特应助Betty采纳,获得10
2分钟前
3分钟前
syvshc发布了新的文献求助10
3分钟前
3分钟前
3分钟前
光轮2000发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603285
求助须知:如何正确求助?哪些是违规求助? 4688360
关于积分的说明 14853356
捐赠科研通 4689089
什么是DOI,文献DOI怎么找? 2540594
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471594