Backdoor Attacks with Wavelet Embedding: Revealing and enhancing the insights of vulnerabilities in visual object detection models on transformers within digital twin systems

后门 小波 计算机科学 人工智能 嵌入 计算机视觉 计算机安全 数字水印 图像(数学)
作者
Meili Shen,Ruwei Huang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:60: 102355-102355 被引量:3
标识
DOI:10.1016/j.aei.2024.102355
摘要

Given the pervasive use of deep learning models across various domains, ensuring model security has emerged as a critical concern. This paper examines backdoor attacks, a form of security threat that compromises model output by poisoning the training data. Our investigation specifically addresses backdoor attacks on object detection models, vital for security-sensitive applications like autonomous driving and smart city systems. Consequently, such attacks on object detection models could pose significant risks to human life and property. Consequently, backdoor attacks on object detection could pose serious threats to human life and property. To elucidate this security risk, we propose and experimentally evaluate five backdoor attack methods for object detection models. The key findings are: (1) Unnecessary Object Generation: a globally embedded trigger creating false objects in the target class; (2) Partial Misclassification: a trigger causing specific class misclassification; (3) Global Misclassification: a trigger reclassifying all objects into the target class; (4) Specific Object Vanishing: a trigger causing non-detection of certain objects; (5) Object Position Shifting: a trigger causing bounding box shifts for a specific class. To assess attack effectiveness, we introduced the Attack Success Rate (ASR), which can surpass 1 in object detection tasks, thus providing a more accurate reflection of the attack impact. Experimental outcomes indicate that the ASR values of these varied backdoor attacks frequently approach or surpass 1, demonstrating our method's capacity to impact multiple objects simultaneously. Additionally, to augment trigger stealth, we introduce Backdoor Attack with Wavelet Embedding (BAWE), which discreetly embeds triggers as image watermarks in training data. This embedding method yields more natural triggers with enhanced stealth. Highly stealthy triggers are less detectable, significantly increasing the likelihood of attack success and efficacy. We have developed a Transformer-based network architecture, diverging from traditional neural network frameworks. Our experiments across various object detection datasets highlight the susceptibility of these models and the high success rate of our approaches. This vulnerability poses significant risks to digital twin systems utilizing object detection technology. Our methodology not only enhances trigger stealth but also suits dense predictive tasks and circumvents current neural network backdoor attack detection methods. The experimental findings expose key challenges in the security of object detection models, particularly when integrated with digital twins, offering new avenues for backdoor attack research and foundational insights for devising defense strategies against these attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田果完成签到,获得积分20
刚刚
za==完成签到,获得积分10
刚刚
ywb完成签到,获得积分10
1秒前
kingcoming完成签到,获得积分10
1秒前
aragakkl完成签到,获得积分10
2秒前
mojito完成签到,获得积分10
2秒前
mwy发布了新的文献求助10
2秒前
蛋黄派完成签到,获得积分10
3秒前
搜集达人应助小次之山采纳,获得50
3秒前
3秒前
默默白开水完成签到 ,获得积分10
3秒前
KKKK完成签到,获得积分10
4秒前
xcx完成签到,获得积分10
4秒前
5秒前
duke完成签到,获得积分10
5秒前
keyaner完成签到,获得积分10
5秒前
ywb发布了新的文献求助30
6秒前
机智谷蕊完成签到,获得积分10
6秒前
Leung完成签到,获得积分10
7秒前
研友_LJGXgn完成签到,获得积分10
7秒前
泡泡球完成签到,获得积分10
8秒前
张益达完成签到,获得积分10
8秒前
rinki01发布了新的文献求助10
8秒前
CHEN.CHENG完成签到,获得积分10
9秒前
pcr163应助栀初采纳,获得80
9秒前
Jasper应助南至采纳,获得10
9秒前
优秀的乐曲完成签到,获得积分10
9秒前
小余发布了新的文献求助10
10秒前
Jasper应助kang采纳,获得10
11秒前
山260完成签到 ,获得积分10
11秒前
11秒前
打打应助冷傲的水儿采纳,获得10
12秒前
旺旺小仙贝完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
13秒前
芒果好高完成签到,获得积分10
13秒前
14秒前
大个应助Goodenough采纳,获得10
14秒前
wanci应助时安采纳,获得10
15秒前
包钰韬发布了新的文献求助20
15秒前
无略完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582