Backdoor Attacks with Wavelet Embedding: Revealing and enhancing the insights of vulnerabilities in visual object detection models on transformers within digital twin systems

后门 小波 计算机科学 人工智能 嵌入 计算机视觉 计算机安全 数字水印 图像(数学)
作者
Meili Shen,Ruwei Huang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102355-102355 被引量:3
标识
DOI:10.1016/j.aei.2024.102355
摘要

Given the pervasive use of deep learning models across various domains, ensuring model security has emerged as a critical concern. This paper examines backdoor attacks, a form of security threat that compromises model output by poisoning the training data. Our investigation specifically addresses backdoor attacks on object detection models, vital for security-sensitive applications like autonomous driving and smart city systems. Consequently, such attacks on object detection models could pose significant risks to human life and property. Consequently, backdoor attacks on object detection could pose serious threats to human life and property. To elucidate this security risk, we propose and experimentally evaluate five backdoor attack methods for object detection models. The key findings are: (1) Unnecessary Object Generation: a globally embedded trigger creating false objects in the target class; (2) Partial Misclassification: a trigger causing specific class misclassification; (3) Global Misclassification: a trigger reclassifying all objects into the target class; (4) Specific Object Vanishing: a trigger causing non-detection of certain objects; (5) Object Position Shifting: a trigger causing bounding box shifts for a specific class. To assess attack effectiveness, we introduced the Attack Success Rate (ASR), which can surpass 1 in object detection tasks, thus providing a more accurate reflection of the attack impact. Experimental outcomes indicate that the ASR values of these varied backdoor attacks frequently approach or surpass 1, demonstrating our method's capacity to impact multiple objects simultaneously. Additionally, to augment trigger stealth, we introduce Backdoor Attack with Wavelet Embedding (BAWE), which discreetly embeds triggers as image watermarks in training data. This embedding method yields more natural triggers with enhanced stealth. Highly stealthy triggers are less detectable, significantly increasing the likelihood of attack success and efficacy. We have developed a Transformer-based network architecture, diverging from traditional neural network frameworks. Our experiments across various object detection datasets highlight the susceptibility of these models and the high success rate of our approaches. This vulnerability poses significant risks to digital twin systems utilizing object detection technology. Our methodology not only enhances trigger stealth but also suits dense predictive tasks and circumvents current neural network backdoor attack detection methods. The experimental findings expose key challenges in the security of object detection models, particularly when integrated with digital twins, offering new avenues for backdoor attack research and foundational insights for devising defense strategies against these attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joker完成签到,获得积分0
刚刚
TQ完成签到,获得积分10
刚刚
Biao完成签到,获得积分10
刚刚
S.S.N完成签到 ,获得积分10
1秒前
2秒前
栗子芸完成签到,获得积分10
2秒前
何果果完成签到,获得积分10
2秒前
ldy发布了新的文献求助10
2秒前
oneinlove发布了新的文献求助10
2秒前
2秒前
Cln完成签到,获得积分10
2秒前
zhouyou完成签到,获得积分10
2秒前
gzf完成签到 ,获得积分10
3秒前
明亮的冰颜完成签到,获得积分10
3秒前
科研通AI2S应助wxy采纳,获得10
3秒前
qingfeng完成签到,获得积分10
4秒前
june1111完成签到,获得积分10
4秒前
coco完成签到,获得积分10
5秒前
犹豫嚣发布了新的文献求助10
5秒前
沉静的红酒完成签到,获得积分10
5秒前
在水一方应助boom采纳,获得10
6秒前
调研昵称发布了新的文献求助30
6秒前
6秒前
kellen完成签到,获得积分10
6秒前
6秒前
6秒前
weiwei完成签到,获得积分10
7秒前
tkdzjr12345发布了新的文献求助10
7秒前
凪白完成签到,获得积分10
8秒前
孤僻完成签到,获得积分10
8秒前
jason完成签到,获得积分10
8秒前
wqwq69完成签到,获得积分10
9秒前
二毛完成签到,获得积分10
9秒前
顺风顺水顺财神完成签到 ,获得积分10
10秒前
10秒前
好好学习完成签到,获得积分10
10秒前
10秒前
yi完成签到,获得积分20
10秒前
CL完成签到,获得积分10
10秒前
未改完成签到,获得积分10
11秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772169
关于积分的说明 7711621
捐赠科研通 2427558
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169