Pyramid cross attention network for pixel-wise surface defect detection

计算机科学 棱锥(几何) 人工智能 过程(计算) 编码器 噪音(视频) 像素 交叉口(航空) GSM演进的增强数据速率 面子(社会学概念) 特征(语言学) 分割 计算机视觉 模式识别(心理学) 图像(数学) 工程类 数学 社会科学 语言学 哲学 几何学 社会学 航空航天工程 操作系统
作者
Zihan Cheng,Haotian Sun,Yuzhu Cao,Weiwei Cao,Jingkun Wang,Gang Yuan,Jian Zheng
出处
期刊:NDT & E international [Elsevier]
卷期号:143: 103053-103053 被引量:1
标识
DOI:10.1016/j.ndteint.2024.103053
摘要

Surface defect detection plays a crucial role in improving the overall quality of industrial production processes and ensuring that the resulting products meet the required quality standards. However, detecting these defects can be challenging due to various issues, including low image contrast, significant background noise, variable defect scales, and blurred boundaries. Although several segmentation networks have been developed to address these challenges, they still face difficulties in preserving fine-grained details during the encoding process and maintaining global features during the decoding process. Moreover, the simple skip connection that combines global and local information for feature fusion fails to consider their discrepancies and varying levels of significance. To overcome these limitations, this paper proposes a Pyramid Cross Attention Network (PCANet) for pixel-level surface defect detection. The encoder extracts multiresolution features, and the pyramid adaptive selection module (PASM) is introduced to supplement lost information and adaptively select information based on its importance. Furthermore, the cross attention fusion module (CAFM) is designed to address the incompatibility between the features extracted by the encoder and decoder in the raw skip connection, while strengthening defect areas and suppressing irrelevant noise using cross attention mechanisms. Finally, extensive experimental results demonstrate that the proposed PCANet outperforms other state-of-the-art methods in terms of mean Intersection over Union (mIoU). Specifically, it achieves an mIoU of 84.57 % in NEU-Seg and 79.37 % in MT_defect, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助DE2022采纳,获得10
刚刚
852应助陶醉觅夏采纳,获得10
1秒前
wsqg123发布了新的文献求助10
1秒前
科研通AI2S应助麻瓜采纳,获得10
1秒前
3秒前
阿橘发布了新的文献求助10
3秒前
4秒前
上官若男应助冷艳的孤晴采纳,获得10
5秒前
xj发布了新的文献求助10
8秒前
hucchongzi应助lxy采纳,获得10
8秒前
sxl完成签到,获得积分10
8秒前
njb发布了新的文献求助10
8秒前
飞儿随缘完成签到,获得积分10
9秒前
西南柳叶刀完成签到,获得积分10
9秒前
感动书文完成签到,获得积分10
9秒前
紧张的洋葱完成签到,获得积分10
12秒前
lyy发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
Happy_du完成签到,获得积分10
16秒前
科研通AI2S应助吃猫的鱼采纳,获得10
17秒前
乌拉拉拉拉完成签到,获得积分20
17秒前
asdfg123发布了新的文献求助10
17秒前
19秒前
我不是BOB完成签到,获得积分10
19秒前
慧慧发布了新的文献求助10
19秒前
21秒前
阿紫吖完成签到 ,获得积分10
21秒前
1L发布了新的文献求助10
21秒前
共享精神应助JJJJJJ采纳,获得10
22秒前
大模型应助研友_Lw7MKL采纳,获得10
22秒前
动听平露发布了新的文献求助30
24秒前
25秒前
xyj完成签到,获得积分10
25秒前
慧慧完成签到,获得积分10
27秒前
29秒前
龙龙不卷完成签到,获得积分10
30秒前
Bazinga应助1L采纳,获得10
30秒前
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877020
关于积分的说明 8197467
捐赠科研通 2544342
什么是DOI,文献DOI怎么找? 1374310
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621738