Deciphering the Stability Mechanism of Cu Active Sites in CO2 Electroreduction via Suppression of Antibonding Orbital Occupancy in the O 2p-Cu 3d Hybridization

反键分子轨道 催化作用 轨道能级差 分子轨道 化学物理 化学 反应机理 结晶学 非键轨道 原子轨道 分子 物理 电子 生物化学 有机化学 量子力学
作者
Yanfei Sun,Xiaojun Wang,Huiying Zhang,Xueying Gao,Xiaoxuan Wang,Shiyu Wang,Zheng Tang,Shuyuan Li,Kaiqi Nie,Jiangzhou Xie,Zhiyu Yang,Yi‐Ming Yan
出处
期刊:ACS Catalysis 卷期号:: 1351-1362 被引量:6
标识
DOI:10.1021/acscatal.3c04710
摘要

Copper-based catalysts, hallmarked by their ideal C–C coupling energy facilitated by the symbiotic presence of Cu+ and Cu0 active sites, are poised to revolutionize the selective electrochemical reduction of CO2 to C2H4. Regrettably, these catalysts are beleaguered by the unavoidable diminution of Cu+ to Cu0 during the reaction process, resulting in suboptimal C2H4 yields. To circumvent this limitation, we have judiciously mitigated the antibonding orbital occupancy in the O 2p and Cu+ 3d hybridization by introducing Cu defects into Cu2O, thereby augmenting the Cu–O bond strength to stabilize Cu+ sites and further decipher the stabilization mechanism of Cu+. This structural refinement, illuminated by meticulous DFT calculations, fosters a heightened free energy threshold for the hydrogen evolution reaction (HER), while orchestrating a thermodynamically favorable milieu for enhanced C–C coupling within the Cu-deficient Cu2O (Cuv-Cu2O). Empirically, Cuv-Cu2O has outperformed its pure Cu2O counterpart, exhibiting a prominent C2H4/CO ratio of 1.69 as opposed to 1.01, without conceding significant ground in C2H4 production over an 8 h span at −1.3 V vs RHE. This endeavor not only delineates the critical influence of antibonding orbital occupancy on bond strength and reveals the deep mechanism about Cu+ sites but also charts a pioneering pathway in the realm of advanced materials design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
多吃点饭发布了新的文献求助10
3秒前
醉书生应助hahaha采纳,获得10
3秒前
3秒前
3秒前
4秒前
Pluto完成签到,获得积分10
4秒前
4秒前
5秒前
liuqian完成签到,获得积分10
5秒前
JingP完成签到,获得积分10
5秒前
思源应助布洛芬救我狗命采纳,获得10
8秒前
8秒前
丘比特应助Pluto采纳,获得20
9秒前
10秒前
Link完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
LT发布了新的文献求助20
13秒前
ZZ0110Z完成签到 ,获得积分10
13秒前
14秒前
YYYY完成签到 ,获得积分10
14秒前
稳重若山发布了新的文献求助30
15秒前
爱撒娇的长颈鹿完成签到,获得积分10
15秒前
15秒前
思源应助慈祥的书琴采纳,获得10
16秒前
16秒前
多吃点饭完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
Akim应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得30
18秒前
彭于晏应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2996904
求助须知:如何正确求助?哪些是违规求助? 2657343
关于积分的说明 7192485
捐赠科研通 2292764
什么是DOI,文献DOI怎么找? 1215534
科研通“疑难数据库(出版商)”最低求助积分说明 593225
版权声明 592825