亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature-Based Inventory Control with Censored Demand

特征(语言学) 库存控制 计算机科学 后悔 数学优化 存货理论 运筹学 数学 机器学习 哲学 语言学
作者
Jingying Ding,Woonghee Tim Huh,Ying Rong
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (3): 1157-1172 被引量:2
标识
DOI:10.1287/msom.2021.0135
摘要

Problem definition: We study stochastic periodic-review inventory systems with lost sales, where the decision maker has no access to the true demand distribution a priori and can only observe historical sales data (referred to as censored demand) and feature information about the demand. In an inventory system, excess demand is unobservable because of inventory constraints, and sales data alone cannot fully recover the true demand. Meanwhile, feature information about the demand is abundant to assist inventory decisions. We incorporate features for inventory systems with censored demand. Methodology/results: We propose two feature-based inventory algorithms called the feature-based adaptive inventory algorithm and the dynamic shrinkage algorithm. Both algorithms are based on the stochastic gradient descent method. We measure the performance of the proposed algorithms through the average expected regret in finite periods: that is, the difference between the cost of our algorithms and that of a clairvoyant optimal policy with access to information, which is acting optimally. We show that the average expected cost incurred under both algorithms converges to the clairvoyant optimal cost at the rate of [Formula: see text] for the perishable inventory case and [Formula: see text] for the nonperishable inventory case. The feature-based adaptive inventory algorithm results in high volatility in the stochastic gradients, which hampers the initial performance of regret. The dynamic shrinkage algorithm uses a shrinkage parameter to adjust the gradients, which significantly improves the initial performance. Managerial implications: This paper considers feature information. The idea of dynamic shrinkage for the stochastic gradient descent method builds on a fundamental insight known as the bias-variance trade-off. Our research shows the importance of incorporating the bias-variance in a dynamic environment for inventory systems with feature information. Funding: W. T. Huh acknowledges support from the NSERC Discovery Grants [Grant RGPIN 2020-04213] and the Canada Research Chair Program. The work of Y. Rong was supported by the National Natural Science Foundation of China [Grants 72025201, 72331006, and 72221001]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0135 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助优美的冰真采纳,获得10
1秒前
YANGYINGSHUO发布了新的文献求助10
3秒前
4秒前
JKWu完成签到,获得积分10
9秒前
简单的尔风完成签到 ,获得积分10
14秒前
18秒前
田様应助qq采纳,获得10
22秒前
JMZ14258发布了新的文献求助10
24秒前
超脱闲人发布了新的文献求助10
31秒前
JMZ14258完成签到,获得积分10
32秒前
落沧完成签到 ,获得积分10
34秒前
古铜完成签到 ,获得积分10
37秒前
37秒前
38秒前
汉堡包应助超脱闲人采纳,获得10
43秒前
qq发布了新的文献求助10
43秒前
zyx完成签到,获得积分10
44秒前
47秒前
ANNNNN发布了新的文献求助10
53秒前
56秒前
iShine完成签到 ,获得积分10
1分钟前
jiaojiao发布了新的文献求助10
1分钟前
hh发布了新的文献求助10
1分钟前
往复完成签到,获得积分10
1分钟前
大模型应助ANNNNN采纳,获得10
1分钟前
1分钟前
1分钟前
领导范儿应助斯文觅云采纳,获得10
1分钟前
LukeLion发布了新的文献求助10
1分钟前
小不胖鼠发布了新的文献求助10
1分钟前
hh关闭了hh文献求助
1分钟前
CC完成签到,获得积分10
1分钟前
1分钟前
高大的机器猫完成签到 ,获得积分10
1分钟前
K寓应助七七采纳,获得10
1分钟前
丘比特应助CYC采纳,获得10
1分钟前
1分钟前
1分钟前
英俊的铭应助小不胖鼠采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256842
求助须知:如何正确求助?哪些是违规求助? 2898968
关于积分的说明 8303160
捐赠科研通 2568204
什么是DOI,文献DOI怎么找? 1394916
科研通“疑难数据库(出版商)”最低求助积分说明 652924
邀请新用户注册赠送积分活动 630631