Feature-Based Inventory Control with Censored Demand

特征(语言学) 库存控制 计算机科学 后悔 数学优化 存货理论 运筹学 数学 机器学习 哲学 语言学
作者
Jingying Ding,Woonghee Tim Huh,Ying Rong
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (3): 1157-1172 被引量:2
标识
DOI:10.1287/msom.2021.0135
摘要

Problem definition: We study stochastic periodic-review inventory systems with lost sales, where the decision maker has no access to the true demand distribution a priori and can only observe historical sales data (referred to as censored demand) and feature information about the demand. In an inventory system, excess demand is unobservable because of inventory constraints, and sales data alone cannot fully recover the true demand. Meanwhile, feature information about the demand is abundant to assist inventory decisions. We incorporate features for inventory systems with censored demand. Methodology/results: We propose two feature-based inventory algorithms called the feature-based adaptive inventory algorithm and the dynamic shrinkage algorithm. Both algorithms are based on the stochastic gradient descent method. We measure the performance of the proposed algorithms through the average expected regret in finite periods: that is, the difference between the cost of our algorithms and that of a clairvoyant optimal policy with access to information, which is acting optimally. We show that the average expected cost incurred under both algorithms converges to the clairvoyant optimal cost at the rate of [Formula: see text] for the perishable inventory case and [Formula: see text] for the nonperishable inventory case. The feature-based adaptive inventory algorithm results in high volatility in the stochastic gradients, which hampers the initial performance of regret. The dynamic shrinkage algorithm uses a shrinkage parameter to adjust the gradients, which significantly improves the initial performance. Managerial implications: This paper considers feature information. The idea of dynamic shrinkage for the stochastic gradient descent method builds on a fundamental insight known as the bias-variance trade-off. Our research shows the importance of incorporating the bias-variance in a dynamic environment for inventory systems with feature information. Funding: W. T. Huh acknowledges support from the NSERC Discovery Grants [Grant RGPIN 2020-04213] and the Canada Research Chair Program. The work of Y. Rong was supported by the National Natural Science Foundation of China [Grants 72025201, 72331006, and 72221001]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0135 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的怜阳完成签到,获得积分10
1秒前
所所应助娜娜呀采纳,获得10
1秒前
1秒前
开心如冬发布了新的文献求助10
1秒前
2秒前
2秒前
黄晟钊完成签到,获得积分10
2秒前
wbgwudi完成签到,获得积分10
3秒前
科研科完成签到,获得积分10
3秒前
4秒前
酷炫翠桃应助王不王采纳,获得10
4秒前
4秒前
苹果发布了新的文献求助10
4秒前
追寻的秋玲完成签到,获得积分10
5秒前
易槐完成签到,获得积分10
5秒前
曦曦发布了新的文献求助10
5秒前
无语的从云完成签到,获得积分10
6秒前
开心如冬完成签到,获得积分10
7秒前
桑葚完成签到,获得积分10
7秒前
ZYC007完成签到,获得积分10
7秒前
7秒前
Emily完成签到,获得积分10
8秒前
慕青应助xy采纳,获得10
8秒前
英俊的铭应助dahuihui采纳,获得10
8秒前
顺心紫南完成签到,获得积分10
8秒前
menghongmei发布了新的文献求助10
9秒前
偷乐发布了新的文献求助10
9秒前
李健应助无语的笑珊采纳,获得10
9秒前
9秒前
有机分子笼完成签到,获得积分10
10秒前
77777发布了新的文献求助10
10秒前
yjzzz完成签到,获得积分10
10秒前
fly完成签到,获得积分10
10秒前
大模型应助Dearjw1655采纳,获得10
11秒前
11秒前
11秒前
yueyue完成签到,获得积分10
11秒前
莫西莫西发布了新的文献求助10
11秒前
12秒前
ColinWine完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582