Feature-Based Inventory Control with Censored Demand

特征(语言学) 库存控制 计算机科学 后悔 数学优化 存货理论 运筹学 数学 机器学习 哲学 语言学
作者
Jingying Ding,Woonghee Tim Huh,Ying Rong
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (3): 1157-1172 被引量:2
标识
DOI:10.1287/msom.2021.0135
摘要

Problem definition: We study stochastic periodic-review inventory systems with lost sales, where the decision maker has no access to the true demand distribution a priori and can only observe historical sales data (referred to as censored demand) and feature information about the demand. In an inventory system, excess demand is unobservable because of inventory constraints, and sales data alone cannot fully recover the true demand. Meanwhile, feature information about the demand is abundant to assist inventory decisions. We incorporate features for inventory systems with censored demand. Methodology/results: We propose two feature-based inventory algorithms called the feature-based adaptive inventory algorithm and the dynamic shrinkage algorithm. Both algorithms are based on the stochastic gradient descent method. We measure the performance of the proposed algorithms through the average expected regret in finite periods: that is, the difference between the cost of our algorithms and that of a clairvoyant optimal policy with access to information, which is acting optimally. We show that the average expected cost incurred under both algorithms converges to the clairvoyant optimal cost at the rate of [Formula: see text] for the perishable inventory case and [Formula: see text] for the nonperishable inventory case. The feature-based adaptive inventory algorithm results in high volatility in the stochastic gradients, which hampers the initial performance of regret. The dynamic shrinkage algorithm uses a shrinkage parameter to adjust the gradients, which significantly improves the initial performance. Managerial implications: This paper considers feature information. The idea of dynamic shrinkage for the stochastic gradient descent method builds on a fundamental insight known as the bias-variance trade-off. Our research shows the importance of incorporating the bias-variance in a dynamic environment for inventory systems with feature information. Funding: W. T. Huh acknowledges support from the NSERC Discovery Grants [Grant RGPIN 2020-04213] and the Canada Research Chair Program. The work of Y. Rong was supported by the National Natural Science Foundation of China [Grants 72025201, 72331006, and 72221001]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0135 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟大猫应助无辜之卉采纳,获得10
刚刚
搜集达人应助无辜之卉采纳,获得10
刚刚
王玉琴发布了新的文献求助20
刚刚
okghy完成签到 ,获得积分10
1秒前
YYY完成签到 ,获得积分10
1秒前
pinging应助肖俊彦采纳,获得10
1秒前
八八发布了新的文献求助20
2秒前
通~发布了新的文献求助30
2秒前
淡定的思松应助Ryan采纳,获得10
2秒前
李来仪发布了新的文献求助10
2秒前
3秒前
封小封完成签到,获得积分10
3秒前
面面完成签到,获得积分20
3秒前
笑点低梦露完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
DD完成签到,获得积分10
5秒前
今非完成签到,获得积分10
5秒前
研友_VZG7GZ应助LiShin采纳,获得10
5秒前
wangye完成签到,获得积分10
6秒前
糜厉完成签到,获得积分10
7秒前
7秒前
希望天下0贩的0应助谢安采纳,获得10
7秒前
8秒前
8秒前
wangye发布了新的文献求助10
8秒前
拼搏起眸完成签到 ,获得积分20
9秒前
9秒前
哈哈哈发布了新的文献求助10
9秒前
小敦关注了科研通微信公众号
10秒前
最优解完成签到,获得积分10
10秒前
海棠听风完成签到,获得积分10
10秒前
WUYANG完成签到,获得积分10
11秒前
情怀应助javalin采纳,获得10
11秒前
12秒前
12秒前
思有完成签到 ,获得积分10
12秒前
德德发布了新的文献求助10
12秒前
无花果应助dpp采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794