亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Emerging Strategies for Modifying Cytochrome P450 Monooxygenases into Peroxizymes

单加氧酶 异构化 细胞色素P450 辅因子 化学 催化循环 定向进化 NAD+激酶 均分解 生物催化 小分子 立体化学 催化作用 加氧酶 组合化学 生物化学 反应机理 激进的 突变体 基因
作者
Shengxian Fan,Zhiqi Cong
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:4
标识
DOI:10.1021/acs.accounts.3c00746
摘要

ConspectusCytochrome P450 monooxygenase is a versatile oxidizing enzyme with great potential in synthetic chemistry and biology. However, the dependence of its catalytic function on the nicotinamide cofactor NAD(P)H and redox partner proteins limits the practical catalytic application of P450 in vitro. An alternative to expensive cofactors is low-cost H2O2, which can be used directly to exploit the catalytic potential of P450s. However, the peroxide shunt pathway is generally inefficient at driving P450 catalysis compared to normal NAD(P)H-dependent activity. Over the last few decades, the scientific community has made continuous efforts to use directed evolution or site-directed mutagenesis to modify P450 monooxygenases into their peroxizyme modes─peroxygenase and peroxidase. Despite significant progress, obtaining efficient P450 peroxizymes remains a huge challenge. Here, we summarize our efforts to modulate peroxizyme activity in P450 monooxygenases and exploit their catalytic applications in challenging selective C–H oxidation, oxygenation, and oxyfunctionalization over the past seven years. We first developed a dual-functional small molecule (DFSM) strategy for transforming P450BM3 monooxygenase into peroxygenase. In this strategy, the typical DFSM, such as N-(ω-imidazolyl)-hexanoyl-l-phenylalanine (Im-C6-Phe), binds to the P450BM3 protein with an anchoring group at one end and plays a general acid–base catalytic role in the activation of H2O2 with an imidazolyl group at the other end. Compared with the O–O homolysis mechanism in the absence of DFSM, the addition of DFSM efficiently enables the heterolytic O–O cleavage of the adduct Fe–O–OH, thus being favored for the formation of active species compound I, which has been demonstrated by combining crystallographic and theoretical calculations. Furthermore, protein engineering showed the unique catalytic performance of DFSM-facilitated P450 peroxygenase for the highly difficult selective oxidation of C–H bonds. This catalytic performance was demonstrated during the chemoselective hydroxylation of gaseous alkanes, regioselective O-demethylation of aryl ethers, highly (R)-enantioselective epoxidation of styrene, and regio- and enantiomerically diverse hydroxylation of alkylbenzenes. Second, we demonstrated that DFSM-facilitated P450BM3 peroxygenase could be effectively switched to an efficient peroxidase mode through mechanism-guided protein engineering of redox-sensitive residues. Utilizing the peroxidase function of P450 enabled the direct nitration of unsaturated hydrocarbons including phenols, aromatic amines, and styrene derivatives, which was not only the P450-catalyzed direct nitration of phenols and aromatic amines for the first time but also the first example of the direct biological nitration of olefins. Finally, we report an H2O2 tunnel engineering strategy to enable peroxygenase activity in several different P450 monooxygenases for the first time, providing a general approach for accessing engineered P450 peroxygenases. In this Account, we highlight the emerging strategies we have developed for producing practical P450 peroxizyme biocatalysts. Although the DFSM strategy is primarily applied to P450BM3 to date, both strategies of redox-sensitive residue engineering and H2O2 tunnel engineering show great potential to extend to other P450s. These strategies have expanded the scope of applications of P450 chemistry and catalysis. Additionally, they provide a unique solution to the challenging selective oxidation of inert C–H bonds in synthetic chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
mochi发布了新的文献求助10
17秒前
CodeCraft应助科研通管家采纳,获得10
59秒前
嗯哼应助科研通管家采纳,获得10
59秒前
嗯哼应助科研通管家采纳,获得10
59秒前
valere完成签到 ,获得积分10
1分钟前
Shyee完成签到 ,获得积分10
1分钟前
念工人发布了新的文献求助10
2分钟前
2分钟前
一指墨发布了新的文献求助10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
chendaaoctss完成签到 ,获得积分10
3分钟前
所所应助舒心的水卉采纳,获得10
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
嗯哼应助科研通管家采纳,获得10
4分钟前
爱爱完成签到 ,获得积分10
5分钟前
巴山石也完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
一指墨发布了新的文献求助10
6分钟前
7分钟前
我不李姐发布了新的文献求助10
7分钟前
心灵美语兰完成签到 ,获得积分10
7分钟前
传奇3应助我不李姐采纳,获得10
7分钟前
彭于晏应助复杂丹琴采纳,获得10
8分钟前
嗯哼应助科研通管家采纳,获得10
8分钟前
嗯哼应助科研通管家采纳,获得10
8分钟前
9分钟前
坦率灵萱发布了新的文献求助10
9分钟前
9分钟前
9分钟前
9分钟前
一指墨发布了新的文献求助10
9分钟前
我不李姐发布了新的文献求助10
9分钟前
所所应助坦率灵萱采纳,获得10
9分钟前
爆米花应助戴呆采纳,获得10
9分钟前
9分钟前
Hello应助我不李姐采纳,获得10
9分钟前
复杂丹琴发布了新的文献求助10
9分钟前
高分求助中
LNG地下式貯槽指針(JGA指-107) 1000
LNG地上式貯槽指針 (JGA指 ; 108) 1000
QMS18Ed2 | process management. 2nd ed 600
LNG as a marine fuel—Safety and Operational Guidelines - Bunkering 560
How Stories Change Us A Developmental Science of Stories from Fiction and Real Life 500
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2934143
求助须知:如何正确求助?哪些是违规求助? 2588630
关于积分的说明 6975421
捐赠科研通 2234628
什么是DOI,文献DOI怎么找? 1186778
版权声明 589799
科研通“疑难数据库(出版商)”最低求助积分说明 580903