摘要
Advanced Materials TechnologiesVolume 9, Issue 4 2301377 Research Article A Flexible Pressure Sensor with Wide Detection Range Based on Capacitive-Piezoresistive Dual Mode Conversion for Human-Machine Interaction Liangsong Huang, Liangsong Huang The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 ChinaSearch for more papers by this authorShuo Wang, Shuo Wang The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 ChinaSearch for more papers by this authorPeng Zhang, Corresponding Author Peng Zhang [email protected] orcid.org/0009-0005-0158-9245 The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China E-mail: [email protected]Search for more papers by this authorKun Zhang, Kun Zhang The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 ChinaSearch for more papers by this authorYuxia Li, Yuxia Li The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 ChinaSearch for more papers by this authorZhifu Chen, Zhifu Chen The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 ChinaSearch for more papers by this author Liangsong Huang, Liangsong Huang The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 ChinaSearch for more papers by this authorShuo Wang, Shuo Wang The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 ChinaSearch for more papers by this authorPeng Zhang, Corresponding Author Peng Zhang [email protected] orcid.org/0009-0005-0158-9245 The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 China E-mail: [email protected]Search for more papers by this authorKun Zhang, Kun Zhang The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 ChinaSearch for more papers by this authorYuxia Li, Yuxia Li The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 ChinaSearch for more papers by this authorZhifu Chen, Zhifu Chen The College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590 ChinaSearch for more papers by this author First published: 04 January 2024 https://doi.org/10.1002/admt.202301377Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Flexible pressure sensor is widely used in fields such as healthcare, intelligent prosthetics, and patient rehabilitation. However, how to ensure high sensitivity of the sensor while having a wide detection range remains a challenge. In order to address this challenge, a flexible pressure sensor with a wide detection range based on capacitive-piezoresistive dual mode conversion is proposed. By manufacturing circular through-holes on the dielectric layer of the sensor, the microstructure of the upper and lower electrode layers can achieve non-contact and contact switching under different pressures through the through holes. This means that the sensor remains in capacitive mode at low pressure and then in piezoresistive mode at high pressure. By cleverly combining the two modes, the measurement range can reach 2 000 kPa and high sensitivity can be maintained during mode switching. In addition, its production process is simple, the cost is low, and it has a fast response time (120 ms) and good repeatability stability. The experimental results indicate that the sensor can achieve ideal performance in proximity detection, human behavior monitoring, and ultra high-pressure detection, and has broad application prospects in providing a more powerful human-computer interaction interface and expanding more comprehensive health monitoring. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available in the supplementary material of this article. Supporting Information Filename Description admt202301377-sup-0001-SuppMat.pdf515.1 KB Supporting Information admt202301377-sup-0002-VideoS1.avi5.5 MB Supporting Information Video 1 admt202301377-sup-0003-VideoS2.avi6.4 MB Supporting Information Video 2 admt202301377-sup-0004-VideoS3.mp45.6 MB Supporting Information Video 3 Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1Y. Shi, X. Lu, W. Wang, X. Meng, J. Zhao, P. Wang, G. Bai, IEEE Trans. Instrum. Meas. 2021, 70, 9511809. CASGoogle Scholar 2G. Wang, J. Yan, X. Yang, X. Qing, IEEE Sens. J. 2022, 22, 405. 10.1109/JSEN.2021.3131164 CASWeb of Science®Google Scholar 3F. Liu, S. Dai, J. Cao, Z. Zhang, G. Cheng, J. Ding, Sens. Actuators, A 2022, 343, 113672. 10.1016/j.sna.2022.113672 CASGoogle Scholar 4M. Jing, J. Zhou, P. Zhang, D. Hou, J. Shen, J. Tian, W. Chen, ACS Appl. Mater. Interfaces 2022, 14, 55119. 10.1021/acsami.2c17879 CASPubMedWeb of Science®Google Scholar 5D. Du, X. Ma, W. An, S. Yu, Measurement 2022, 201, 111645. 10.1016/j.measurement.2022.111645 Google Scholar 6J. Luo, L. Zhang, T. Wu, H. Song, C. Tang, Extreme Mech. Lett. 2021, 48, 101279. 10.1016/j.eml.2021.101279 Web of Science®Google Scholar 7Y. Yang, H. Pan, G. Xie, Y. Jiang, C. Chen, Y. Su, Y. Wang, H. Tai, Sens. Actuators, A 2020, 301, 111789. 10.1016/j.sna.2019.111789 CASWeb of Science®Google Scholar 8Y. Zhong, J. Wang, L. Han, S. Dai, H. Zhu, J. Hua, G. Cheng, J. Ding, Sens. Actuators, A 2023, 349, 114013. 10.1016/j.sna.2022.114013 CASGoogle Scholar 9R. Liu, Y. Lai, S. Li, F. Wu, J. Shao, D. Liu, X. Dong, J. Wang, Z. L. Wang, Nano Energy 2022, 95, 107056. 10.1016/j.nanoen.2022.107056 CASWeb of Science®Google Scholar 10Y. Tan, X. Liu, W. Tang, J. Chen, Z. Zhu, L. Li, N. Zhou, X. Kang, D. Xu, L. Wang, G. Wang, H. Tan, H. Li, Adv. Mater. Interfaces 2022, 9, 2101312. 10.1002/admi.202101312 Web of Science®Google Scholar 11V. Palaniappan, S. Masihi, M. Panahi, D. Maddipatla, A. K. Bose, X. Zhang, B. B. Narakathu, B. J. Bazuin, M. Z. Atashbar, IEEE Sens. J. 2020, 20, 7605. 10.1109/JSEN.2020.2989146 CASWeb of Science®Google Scholar 12W. Cheng, J. Wang, Z. Ma, K. Yan, Y. Wang, H. Wang, S. Li, Y. Li, L. Pan, Y. Shi, IEEE Electron Device Lett. 2018, 39, 288. 10.1109/LED.2017.2784538 CASWeb of Science®Google Scholar 13Y. Shi, X. Lü, J. Zhao, W. Wang, X. Meng, P. Wang, F. Li, Micromachines 2022, 13, 223. 10.3390/mi13020223 PubMedGoogle Scholar 14B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, X. Chen, Small 2014, 10, 3625. 10.1002/smll.201401207 CASPubMedWeb of Science®Google Scholar 15X. Hou, J. Zhong, J. He, C. Yang, J. Yu, L. Mei, J. Mu, W. Geng, X. Chou, Sci. China Technol. Sci. 2022, 65, 1169. 10.1007/s11431-021-1993-9 CASWeb of Science®Google Scholar 16S. Li, X. Chen, X. Li, H. Tian, C. Wang, B. Nie, J. He, J. Shao, Sci. Adv. 2022, 8, eade720. Google Scholar 17Y. Luo, X. Chen, X. Li, H. Tian, S. Li, L. Wang, J. He, Z. Yang, J. Shao, Adv. Mater. 2023, 35, 2207141. 10.1002/adma.202207141 CASWeb of Science®Google Scholar 18X. Chen, J. Shao, H. Tian, X. Li, C. Wang, Y. Luo, S. Li, Adv. Mater. Technol. 2020, 5, 2000046. 10.1002/admt.202000046 CASWeb of Science®Google Scholar 19Z. Luo, J. Chen, Z. Zhu, L. Li, Y. Su, L. Wang, H. Li, 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) 2021, 647. 10.1109/NEMS51815.2021.9451477 Google Scholar 20M. Guo, C. Wang, Z. Yang, Z. Xu, M. Yang, P. Zhao, Y. Zhou, P. Li, Q. Wang, Y. Li, Electronics 2022, 11, 1651. 10.3390/electronics11101651 CASWeb of Science®Google Scholar 21X. Chen, Q. Zeng, J. Shao, S. Li, X. Li, H. Tian, G. Liu, B. Nie, Y. Luo, ACS Appl. Mater. Interfaces 2021, 13, 34637. 10.1021/acsami.1c09963 CASPubMedWeb of Science®Google Scholar 22X. Zeng, Z. Wang, H. Zhang, W. Yang, L. Xiang, Z. Zhao, L.-M. Peng, Y. Hu, ACS Appl. Mater. Interfaces 2019, 11, 21218. 10.1021/acsami.9b02518 CASPubMedWeb of Science®Google Scholar 23Y. Xiong, Y. Shen, L. Tian, Y. Hu, P. Zhu, R. Sun, C.-P. Wong, Nano Energy 2020, 70, 104436. 10.1016/j.nanoen.2019.104436 CASWeb of Science®Google Scholar 24Y. Zhang, Y. Hu, P. Zhu, F. Han, Y. Zhu, R. Sun, C.-P. Wong, ACS Appl. Mater. Interfaces 2017, 9, 35968. 10.1021/acsami.7b09617 CASPubMedWeb of Science®Google Scholar 25W. Chen, B. Wang, Q. Zhu, X. Yan, Sensors 2019, 19, 5194. 10.3390/s19235194 Web of Science®Google Scholar 26X. Su, C. Luo, W. Yan, J. Jiao, D. Zhong, Materials 2021, 14, 7385. 10.3390/ma14237385 CASPubMedGoogle Scholar 27X. You, J. He, N. Nan, X. Sun, K. Qi, Y. Zhou, W. Shao, F. Liu, S. Cui, J. Mater. Chem. C 2018, 6, 12981. 10.1039/C8TC03631D CASWeb of Science®Google Scholar 28X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Adv. Mater. 2014, 26, 1336. 10.1002/adma.201304248 CASPubMedWeb of Science®Google Scholar 29X. Tang, C. Wu, L. Gan, T. Zhang, T. Zhou, J. Huang, H. Wang, C. Xie, D. Zeng, Small 2019, 15, 1804559. 10.1002/smll.201804559 PubMedWeb of Science®Google Scholar 30X. Zhang, F. Chen, L. Han, G. Zhang, Y. Hu, W. Jiang, P. Zhu, R. Sun, C.-P. Wong, Adv. Eng. Mater. 2021, 23, 2000902. 10.1002/adem.202000902 CASWeb of Science®Google Scholar 31Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, T.-L. Ren, ACS Nano 2018, 12, 2346. 10.1021/acsnano.7b07613 CASPubMedWeb of Science®Google Scholar 32Y. Long, S.-Y. Xia, Z. Huang, C.-H. Li, G. He, X. Ma, X. Liang, J. Li, IEEE Trans. Electron Devices 2022, 69, 1353. 10.1109/TED.2022.3146108 CASWeb of Science®Google Scholar 33J. Wang, R. Suzuki, M. Shao, F. Gillot, S. Shiratori, ACS Appl. Mater. Interfaces 2019, 11, 11928. 10.1021/acsami.9b00941 CASPubMedWeb of Science®Google Scholar 34C. Mahata, H. Algadi, J. Lee, S. Kim, T. Lee, Measurement 2020, 151, 107095. 10.1016/j.measurement.2019.107095 Web of Science®Google Scholar 35D. Ge, A. A. Babangida, Z. Hu, L. Zhang, M. Wang, IEEE Sens. J. 2022, 22, 3040. 10.1109/JSEN.2021.3130445 CASWeb of Science®Google Scholar 36F. Zhang, K. Yang, Z. Pei, Y. Wu, S. Sang, Q. Zhang, H. Jiao, RSC Adv. 2022, 12, 2391. 10.1039/D1RA08608A CASPubMedWeb of Science®Google Scholar 37H. Sadiq, H. Hui, S. Huang, K. Mahmood, M. H. Sharif, I. Ali, IEEE Sens. J. 2022, 22, 3033. 10.1109/JSEN.2021.3114379 CASWeb of Science®Google Scholar 38J. Wang, J. Jiu, M. Nogi, T. Sugahara, S. Nagao, H. Koga, P. He, K. Suganuma, Nanoscale 2015, 7, 2926. 10.1039/C4NR06494A CASPubMedWeb of Science®Google Scholar 39L. A. Kurup, C. M. Cole, J. N. Arthur, S. D. Yambem, ACS Appl. Nano Mater. 2022, 5, 2973. 10.1021/acsanm.2c00247 CASWeb of Science®Google Scholar 40Y. Kim, S. Jang, J. H. Oh, Microelectron. Eng. 2019, 215, 111002. 10.1016/j.mee.2019.111002 Web of Science®Google Scholar 41B.-Y. Lee, J. Kim, H. Kim, C. Kim, S.-D. Lee, Sens. Actuators, A 2016, 240, 103. 10.1016/j.sna.2016.01.037 CASWeb of Science®Google Scholar 42J. C. Yang, J.-O. Kim, J. Oh, S. Y. Kwon, J. Y. Sim, D. W. Kim, H. B. Choi, S. Park, ACS Appl. Mater. Interfaces 2019, 11, 19472. 10.1021/acsami.9b03261 CASPubMedWeb of Science®Google Scholar 43W. Li, X. Jin, X. Han, Y. Li, W. Wang, T. Lin, Z. Zhu, ACS Appl. Mater. Interfaces 2021, 13, 19211. 10.1021/acsami.0c22938 CASPubMedWeb of Science®Google Scholar 44Y. Xiao, Y. Duan, N. Li, L. Wu, B. Meng, F. Tan, Y. Lou, H. Wang, W. Zhang, Z. Peng, ACS Sens. 2021, 6, 1785. 10.1021/acssensors.0c02547 CASPubMedWeb of Science®Google Scholar 45N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang, P. Lu, J. Huang, G. Li, Y. Zhang, J. Yang, K. Xie, X. Zhao, C. F. Guo, Nat. Commun. 2020, 11, 209. 10.1038/s41467-019-14054-9 CASPubMedWeb of Science®Google Scholar 46X. Lu, X. Meng, Y. Shi, H. Tang, W. Bao, IEEE Trans. Electron Devices 2022, 69, 2030. 10.1109/TED.2022.3154677 CASWeb of Science®Google Scholar 47S. Pyo, J. Lee, W. Kim, E. Jo, J. Kim, Adv. Funct. Mater. 2019, 29, 1902484. 10.1002/adfm.201902484 Web of Science®Google Scholar 48Y. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee, J. Kim, J. Myoung, S. Cho, S. Kang, C. Baig, H. Ko, ACS Nano 2018, 12, 4045. 10.1021/acsnano.8b01805 CASPubMedWeb of Science®Google Scholar 49Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang, N. Deng, Y. Yang, T.-L. Ren, ACS Appl. Mater. Interfaces 2016, 8, 26458. 10.1021/acsami.6b08172 CASPubMedWeb of Science®Google Scholar 50X. Tang, C. Wu, L. Gan, T. Zhang, T. Zhou, J. Huang, H. Wang, C. Xie, D. Zeng, Small 2019, 15, 1804559. 10.1002/smll.201804559 PubMedWeb of Science®Google Scholar 51X. Zhao, Q. Hua, R. Yu, Y. Zhang, C. Pan, Adv. Electron. Mater. 2015, 1, 1500142. 10.1002/aelm.201500142 CASWeb of Science®Google Scholar Volume9, Issue4February 19, 20242301377 ReferencesRelatedInformation