SSNet: A Novel Transformer and CNN Hybrid Network for Remote Sensing Semantic Segmentation

计算机科学 分割 人工智能 变压器 模式识别(心理学) 图像分割 计算机视觉 自然语言处理 电气工程 工程类 电压
作者
Min Yao,Y. H. Zhang,Guofeng Liu,Dongdong Pang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3023-3037 被引量:11
标识
DOI:10.1109/jstars.2024.3349657
摘要

There are still various challenges in remote sensing semantic segmentation due to objects diversity and complexity. Transformer-based models have achieved encouraging results in semantic segmentation, which has significant advantages in capturing global feature dependencies. However it unfortunately ignores local feature details. On the other hand, Convolutional Neural Network (CNN), with a different interaction mechanism from Transformer-based models, captures more small-scale local features, but experiences a difficulty to capture global features. In this paper, a new semantic segmentation net framework named SSNet is proposed, which incorporates an encoder-decoder structure, optimizing the advantages of both local and global features. In addition, we build Feature Fuse Module(FFM) and Feature Inject Module(FIM) to largely fuse these two-style features. The former module captures the dependencies between different positions and channels to extract multi-scale features, which promotes the segmentation precision on similar objects. The latter module condenses the global information in Transformer and injects it into CNN to obtain a broad global field of view, in which the depth-wise strip convolution improves the segmentation accuracy on tiny objects. A CNN-based decoder progressively recovers the feature map size, and a block called atrous spatial pyramid pooling (ASPP) is adopted in decoder to obtain a multi-scale context. The skip connection is established between the decoder and the encoder, which retains important feature information of the shallow layer network and is conducive to achieving flow of multi-scale features. To evaluate our model, we compares it with current state-of-the-art models on WHDLD and Potsdam datasets. The experimental results indicate that our proposed model achieves more precise semantic segmentation. The code of this work can be downloaded at https://github.com/stu-yzZ/SSNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩1完成签到,获得积分10
刚刚
丁一完成签到,获得积分10
刚刚
1秒前
YG123发布了新的文献求助10
1秒前
乐观幻天发布了新的文献求助10
3秒前
文献哈巴狗完成签到,获得积分10
4秒前
敏感的寒松完成签到,获得积分10
4秒前
kuka007发布了新的文献求助10
4秒前
507完成签到,获得积分20
5秒前
Jasper应助赵姗姗采纳,获得10
5秒前
奕火完成签到,获得积分10
6秒前
ZZZ完成签到,获得积分10
6秒前
8秒前
8秒前
闪闪冰旋发布了新的文献求助10
9秒前
凤云汐完成签到 ,获得积分10
10秒前
SCIAI应助结实巨人采纳,获得10
10秒前
fugu0完成签到,获得积分10
11秒前
研二发核心完成签到,获得积分10
11秒前
11秒前
Aganlin完成签到 ,获得积分0
11秒前
12秒前
nanlio完成签到,获得积分10
12秒前
13秒前
糖炒莉子完成签到,获得积分10
13秒前
幽默柚子发布了新的文献求助30
14秒前
Akim应助机灵猕猴桃采纳,获得10
14秒前
伶俐从筠应助kuka007采纳,获得10
14秒前
yinxinyi发布了新的文献求助10
14秒前
骆欣怡完成签到 ,获得积分10
15秒前
CodeCraft应助研二发核心采纳,获得10
15秒前
15秒前
阿斗完成签到 ,获得积分10
16秒前
LNJ完成签到,获得积分10
17秒前
SciGPT应助晚上研究死采纳,获得10
17秒前
17秒前
17秒前
赵姗姗发布了新的文献求助10
18秒前
chennn完成签到,获得积分10
18秒前
Let It Be发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648