SSNet: A Novel Transformer and CNN Hybrid Network for Remote Sensing Semantic Segmentation

计算机科学 分割 人工智能 变压器 模式识别(心理学) 图像分割 计算机视觉 自然语言处理 电气工程 工程类 电压
作者
Min Yao,Y. H. Zhang,Guofeng Liu,Dongdong Pang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3023-3037 被引量:11
标识
DOI:10.1109/jstars.2024.3349657
摘要

There are still various challenges in remote sensing semantic segmentation due to objects diversity and complexity. Transformer-based models have achieved encouraging results in semantic segmentation, which has significant advantages in capturing global feature dependencies. However it unfortunately ignores local feature details. On the other hand, Convolutional Neural Network (CNN), with a different interaction mechanism from Transformer-based models, captures more small-scale local features, but experiences a difficulty to capture global features. In this paper, a new semantic segmentation net framework named SSNet is proposed, which incorporates an encoder-decoder structure, optimizing the advantages of both local and global features. In addition, we build Feature Fuse Module(FFM) and Feature Inject Module(FIM) to largely fuse these two-style features. The former module captures the dependencies between different positions and channels to extract multi-scale features, which promotes the segmentation precision on similar objects. The latter module condenses the global information in Transformer and injects it into CNN to obtain a broad global field of view, in which the depth-wise strip convolution improves the segmentation accuracy on tiny objects. A CNN-based decoder progressively recovers the feature map size, and a block called atrous spatial pyramid pooling (ASPP) is adopted in decoder to obtain a multi-scale context. The skip connection is established between the decoder and the encoder, which retains important feature information of the shallow layer network and is conducive to achieving flow of multi-scale features. To evaluate our model, we compares it with current state-of-the-art models on WHDLD and Potsdam datasets. The experimental results indicate that our proposed model achieves more precise semantic segmentation. The code of this work can be downloaded at https://github.com/stu-yzZ/SSNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
plant完成签到,获得积分10
1秒前
lyt完成签到,获得积分10
1秒前
2秒前
3秒前
敏感网络完成签到,获得积分20
4秒前
kh453发布了新的文献求助10
4秒前
4秒前
子爵木完成签到 ,获得积分10
4秒前
HC发布了新的文献求助30
5秒前
无限鞅发布了新的文献求助10
5秒前
SherlockLiu完成签到,获得积分20
5秒前
6秒前
吴岳发布了新的文献求助10
7秒前
陆靖易完成签到,获得积分10
7秒前
9秒前
Bella完成签到 ,获得积分10
9秒前
yhl发布了新的文献求助10
10秒前
11秒前
震动的乐天完成签到,获得积分10
12秒前
13秒前
14秒前
Hello应助xuanxuan采纳,获得10
15秒前
村长热爱美丽完成签到 ,获得积分10
15秒前
一衣完成签到,获得积分20
15秒前
15秒前
17秒前
明理世倌发布了新的文献求助10
17秒前
今后应助niu1采纳,获得10
18秒前
KONG发布了新的文献求助10
18秒前
爆米花应助成梦采纳,获得10
18秒前
yhl完成签到,获得积分20
19秒前
皮皮发布了新的文献求助10
20秒前
圆圆的脑袋应助SCISSH采纳,获得10
21秒前
阳光的雁山完成签到,获得积分10
21秒前
霖宸羽完成签到,获得积分10
22秒前
24秒前
无奈的代珊完成签到 ,获得积分10
24秒前
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808