SSNet: A Novel Transformer and CNN Hybrid Network for Remote Sensing Semantic Segmentation

计算机科学 分割 人工智能 变压器 模式识别(心理学) 图像分割 计算机视觉 自然语言处理 电气工程 工程类 电压
作者
Min Yao,Y. H. Zhang,Guofeng Liu,Dongdong Pang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3023-3037 被引量:11
标识
DOI:10.1109/jstars.2024.3349657
摘要

There are still various challenges in remote sensing semantic segmentation due to objects diversity and complexity. Transformer-based models have achieved encouraging results in semantic segmentation, which has significant advantages in capturing global feature dependencies. However it unfortunately ignores local feature details. On the other hand, Convolutional Neural Network (CNN), with a different interaction mechanism from Transformer-based models, captures more small-scale local features, but experiences a difficulty to capture global features. In this paper, a new semantic segmentation net framework named SSNet is proposed, which incorporates an encoder-decoder structure, optimizing the advantages of both local and global features. In addition, we build Feature Fuse Module(FFM) and Feature Inject Module(FIM) to largely fuse these two-style features. The former module captures the dependencies between different positions and channels to extract multi-scale features, which promotes the segmentation precision on similar objects. The latter module condenses the global information in Transformer and injects it into CNN to obtain a broad global field of view, in which the depth-wise strip convolution improves the segmentation accuracy on tiny objects. A CNN-based decoder progressively recovers the feature map size, and a block called atrous spatial pyramid pooling (ASPP) is adopted in decoder to obtain a multi-scale context. The skip connection is established between the decoder and the encoder, which retains important feature information of the shallow layer network and is conducive to achieving flow of multi-scale features. To evaluate our model, we compares it with current state-of-the-art models on WHDLD and Potsdam datasets. The experimental results indicate that our proposed model achieves more precise semantic segmentation. The code of this work can be downloaded at https://github.com/stu-yzZ/SSNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三完成签到,获得积分10
刚刚
刚刚
jackie完成签到,获得积分20
刚刚
YANYAN完成签到,获得积分10
刚刚
大模型应助任全强采纳,获得10
1秒前
2秒前
共享精神应助IN采纳,获得10
3秒前
十三发布了新的文献求助10
3秒前
wangli完成签到,获得积分10
4秒前
WZW完成签到 ,获得积分10
5秒前
英俊的铭应助纪秋采纳,获得10
5秒前
lwanwan完成签到,获得积分10
6秒前
jh完成签到,获得积分10
6秒前
杨桃发布了新的文献求助10
7秒前
9秒前
heyanmin完成签到,获得积分10
9秒前
哈哈哈完成签到,获得积分10
10秒前
1111应助小巧的柏柳采纳,获得10
11秒前
11秒前
12秒前
小郭应助缓慢飞松采纳,获得10
12秒前
14秒前
文艺摩托完成签到 ,获得积分10
14秒前
15秒前
xiaoyang1986发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
北风完成签到 ,获得积分10
17秒前
17秒前
19秒前
19秒前
叶子发布了新的文献求助10
19秒前
Kaz发布了新的文献求助10
19秒前
20秒前
20秒前
星星发布了新的文献求助10
21秒前
22秒前
Ran发布了新的文献求助30
22秒前
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352