已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

JobEdKG: An uncertain knowledge graph-based approach for recommending online courses and predicting in-demand skills based on career choices

计算机科学 就业能力 能力(人力资源) 探索者 数据科学 知识管理 万维网 心理学 社会心理学 政治学 法学 经济 经济增长
作者
Yousra Fettach,Adil Bahaj,Mounir Ghogho
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:131: 107779-107779
标识
DOI:10.1016/j.engappai.2023.107779
摘要

Modern job markets often require an intricate combination of multi-disciplinary skills or specialist and technical knowledge, even for entry-level positions. Such requirements pose increased pressure on students, new graduates, and job seekers to find suitable sources of information to enhance their employability. Unlike standard competence management systems, this paper presents JobEdKG, which helps job seekers from various backgrounds choose online courses based on their prospective careers in addition to predicting different skills that may be required in their chosen career path. While existing solutions focus on internal institutional data, such as previous student experiences and a fixed set of skills provided by curated datasets, JobEdKG considers external data, recommending online courses that best cover the knowledge and skills required by selected job roles, in addition to extracting and predicting skills of that particular job roles. To achieve this, we first extract skills from job postings and online courses. These skills are linked to job titles, online courses, and other concepts in order to create a knowledge graph (KG). We assign an uncertainty score to each fact in the KG based on the prevalence of the fact in the source data (i.e. job listings and online courses), which results in an uncertain KG (UKG). Finally, we model the constructed UKG in order to infer different relations between the different concepts. The code and the data are available on our GitHub repository (https://github.com/team611/JobEd) and a user interface to browse the KG is available at (http://jobed.datanets.org/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
特别圆的正方形完成签到 ,获得积分10
4秒前
111发布了新的文献求助10
7秒前
猫了个喵发布了新的文献求助30
8秒前
8秒前
9秒前
丽丽发布了新的文献求助10
9秒前
番茄炒蛋完成签到 ,获得积分10
12秒前
13秒前
lonelylong发布了新的文献求助10
13秒前
且从容完成签到,获得积分10
14秒前
15秒前
Three完成签到 ,获得积分10
16秒前
17秒前
Xu完成签到 ,获得积分10
17秒前
18秒前
18秒前
21秒前
杨19980625发布了新的文献求助30
21秒前
tanny发布了新的文献求助10
22秒前
李健应助研友_xnEOX8采纳,获得10
22秒前
称心文博发布了新的文献求助10
24秒前
英俊的铭应助eyu采纳,获得10
25秒前
28秒前
28秒前
bq关闭了bq文献求助
29秒前
瑾年完成签到,获得积分10
29秒前
ommphey完成签到 ,获得积分10
29秒前
瑾年发布了新的文献求助30
32秒前
Joeswith完成签到,获得积分10
33秒前
研友_xnEOX8发布了新的文献求助10
33秒前
Sherl发布了新的文献求助10
35秒前
36秒前
猫了个喵应助马天行采纳,获得10
36秒前
所所应助小武采纳,获得10
40秒前
缓缓发布了新的文献求助10
40秒前
41秒前
一二发布了新的文献求助10
42秒前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
The AASM International Classification of Sleep Disorders – Third Edition, Text Revision (ICSD-3-TR) 490
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3280111
求助须知:如何正确求助?哪些是违规求助? 2918337
关于积分的说明 8389929
捐赠科研通 2589419
什么是DOI,文献DOI怎么找? 1410765
科研通“疑难数据库(出版商)”最低求助积分说明 657848
邀请新用户注册赠送积分活动 639049