Brain Structural Connectivity Guided Vision Transformers for Identification of Functional Connectivity Characteristics in Preterm Neonates

神经科学 医学 连接体 功能连接 计算机科学 人工智能 机器学习 心理学
作者
Wei Mao,Yuzhong Chen,Zhibin He,Zifan Wang,Zhenxiang Xiao,Yusong Sun,Liang He,Jingchao Zhou,Weitong Guo,Chong Ma,Lin Zhao,Keith M. Kendrick,Bo Zhou,Benjamin Becker,Tianming Liu,Tuo Zhang,Xi Jiang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2223-2234 被引量:2
标识
DOI:10.1109/jbhi.2024.3355020
摘要

Preterm birth is the leading cause of death in children under five years old, and is associated with a wide sequence of complications in both short and long term. In view of rapid neurodevelopment during the neonatal period, preterm neonates may exhibit considerable functional alterations compared to term ones. However, the identified functional alterations in previous studies merely achieve moderate classification performance, while more accurate functional characteristics with satisfying discrimination ability for better diagnosis and therapeutic treatment is underexplored. To address this problem, we propose a novel brain structural connectivity (SC) guided Vision Transformer (SCG-ViT) to identify functional connectivity (FC) differences among three neonatal groups: preterm, preterm with early postnatal experience, and term. Particularly, inspired by the neuroscience-derived information, a novel patch token of SC/FC matrix is defined, and the SC matrix is then adopted as an effective mask into the ViT model to screen out input FC patch embeddings with weaker SC, and to focus on stronger ones for better classification and identification of FC differences among the three groups. The experimental results on multi-modal MRI data of 437 neonatal brains from publicly released Developing Human Connectome Project (dHCP) demonstrate that SCG-ViT achieves superior classification ability compared to baseline models, and successfully identifies holistically different FC patterns among the three groups. Moreover, these different FCs are significantly correlated with the differential gene expressions of the three groups. In summary, SCG-ViT provides a powerfully brain-guided pipeline of adopting large-scale and data-intensive deep learning models for medical imaging-based diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
sara发布了新的文献求助10
2秒前
张雷完成签到,获得积分10
3秒前
tanglu发布了新的文献求助10
6秒前
baibai发布了新的文献求助10
6秒前
小文殊完成签到 ,获得积分10
8秒前
大模型应助白樱恋曲采纳,获得10
10秒前
dad完成签到,获得积分10
12秒前
14秒前
赘婿应助yzxzdm采纳,获得30
14秒前
一番星发布了新的文献求助10
15秒前
15秒前
打打应助卜凡采纳,获得10
17秒前
彩虹毛毛虫完成签到,获得积分10
17秒前
clarklkq完成签到,获得积分10
18秒前
jenningseastera举报102755求助涉嫌违规
21秒前
21秒前
酷炫青烟完成签到,获得积分10
23秒前
Lucas应助Wen采纳,获得10
24秒前
baibai完成签到,获得积分10
24秒前
爆米花应助zhu采纳,获得10
24秒前
25秒前
25秒前
家养浩完成签到,获得积分10
25秒前
yzxzdm发布了新的文献求助30
26秒前
SciGPT应助Li采纳,获得10
26秒前
无花果应助myy采纳,获得10
28秒前
卜凡发布了新的文献求助10
28秒前
liu完成签到 ,获得积分10
28秒前
CC发布了新的文献求助10
31秒前
32秒前
35秒前
Orange应助奶糖采纳,获得10
37秒前
cbx发布了新的文献求助10
38秒前
关中人完成签到,获得积分10
38秒前
38秒前
甘博发布了新的文献求助10
39秒前
星辰大海应助06采纳,获得10
40秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991847
求助须知:如何正确求助?哪些是违规求助? 3532997
关于积分的说明 11260291
捐赠科研通 3272252
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425