Prediction of Acute Kidney Injury in Intracerebral Hemorrhage Patients Using Machine Learning

医学 队列 脑出血 随机森林 急性肾损伤 接收机工作特性 机器学习 入射(几何) 逻辑回归 算法 人工智能 梯度升压 急诊医学 内科学 蛛网膜下腔出血 计算机科学 物理 光学
作者
Suhua She,Yulong Shen,Kun Luo,Xiaohai Zhang,Changjun Luo
出处
期刊:Neuropsychiatric Disease and Treatment [Dove Medical Press]
卷期号:Volume 19: 2765-2773 被引量:2
标识
DOI:10.2147/ndt.s439549
摘要

Acute kidney injury (AKI) is prevalent in patients with intracerebral hemorrhage (ICH) and is associated with mortality. This study aimed to verify the predictive accuracy of different machine learning algorithms for AKI in patients with ICH using a large dataset.A total of 1366 ICH patients received treatments between 2001 and 2012 from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were identified based on the ICD-9 code: 431. The main outcome of AKI during hospitalizations was confirmed based on the KDIGO criteria. Overall, ICH patients were randomly divided into the training cohort and validation cohort with the ratio of 7:3. Six machine learning algorithms including extreme gradient boosting, logistic, light gradient boosting machine, random forest, adaptive boosting, support vector machine were trained in the training cohort with the 5-fold cross-validation method to predict the AKI. The predictive accuracy of those algorithms was compared by area under the receiver operating characteristics curve (AUC).A total of 1213 ICH patients were included with the incidence of AKI being 29.3%. The incidence of AKI was 29.3% among the 1213 patients with ICH. The AKI group had higher 30-day mortality (p<0.001), longer ICU stay (p<0.001), and longer hospital stay (p<0.001). Among the six machine learning algorithms, the random forest performed the best in predicting AKI in both the training cohort (AUC=1.000) and the validation cohort (AUC=0.698). The top five features in the random forest algorithm-based model were platelets, serum creatinine, vancomycin, hemoglobin, and hematocrit.The random forest algorithm-based predictive model we developed incorporating important features, including platelet count, serum creatinine level, vancomycin level, hemoglobin level, and hematocrit level, performed the best in predicting AKI among patients with ICH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
粉扑扑的东云完成签到,获得积分10
1秒前
2秒前
Grape完成签到,获得积分10
3秒前
结实大侠发布了新的文献求助10
3秒前
龙龙发布了新的文献求助10
4秒前
谢谢你变体精灵完成签到,获得积分10
4秒前
李爱国应助aaaaaa采纳,获得10
6秒前
6秒前
6秒前
学术虫完成签到,获得积分20
7秒前
7秒前
彭于晏应助十三月的过客采纳,获得10
8秒前
9秒前
10秒前
樱悼柳雪完成签到,获得积分10
10秒前
11秒前
11秒前
69应助龙龙采纳,获得10
12秒前
希望天下0贩的0应助momo采纳,获得10
12秒前
小鱼儿发布了新的文献求助10
13秒前
吕小软完成签到,获得积分10
14秒前
五斤老陈醋完成签到,获得积分10
14秒前
14秒前
老婶子完成签到,获得积分0
15秒前
深情安青应助冷傲的水儿采纳,获得10
15秒前
情怀应助一个黑熊精采纳,获得50
16秒前
18秒前
gingercat发布了新的文献求助30
18秒前
18秒前
彩虹雨完成签到,获得积分10
19秒前
我是老大应助DJ采纳,获得10
20秒前
21秒前
22秒前
芋泥波波完成签到,获得积分10
22秒前
23秒前
23秒前
研友_nv4Bx8完成签到,获得积分10
23秒前
24秒前
ou发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420