Prediction of Acute Kidney Injury in Intracerebral Hemorrhage Patients Using Machine Learning

医学 队列 脑出血 随机森林 急性肾损伤 接收机工作特性 机器学习 入射(几何) 逻辑回归 算法 人工智能 梯度升压 急诊医学 内科学 蛛网膜下腔出血 计算机科学 物理 光学
作者
Suhua She,Yulong Shen,Kun Luo,Xiaohai Zhang,Changjun Luo
出处
期刊:Neuropsychiatric Disease and Treatment [Dove Medical Press]
卷期号:Volume 19: 2765-2773 被引量:2
标识
DOI:10.2147/ndt.s439549
摘要

Acute kidney injury (AKI) is prevalent in patients with intracerebral hemorrhage (ICH) and is associated with mortality. This study aimed to verify the predictive accuracy of different machine learning algorithms for AKI in patients with ICH using a large dataset.A total of 1366 ICH patients received treatments between 2001 and 2012 from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were identified based on the ICD-9 code: 431. The main outcome of AKI during hospitalizations was confirmed based on the KDIGO criteria. Overall, ICH patients were randomly divided into the training cohort and validation cohort with the ratio of 7:3. Six machine learning algorithms including extreme gradient boosting, logistic, light gradient boosting machine, random forest, adaptive boosting, support vector machine were trained in the training cohort with the 5-fold cross-validation method to predict the AKI. The predictive accuracy of those algorithms was compared by area under the receiver operating characteristics curve (AUC).A total of 1213 ICH patients were included with the incidence of AKI being 29.3%. The incidence of AKI was 29.3% among the 1213 patients with ICH. The AKI group had higher 30-day mortality (p<0.001), longer ICU stay (p<0.001), and longer hospital stay (p<0.001). Among the six machine learning algorithms, the random forest performed the best in predicting AKI in both the training cohort (AUC=1.000) and the validation cohort (AUC=0.698). The top five features in the random forest algorithm-based model were platelets, serum creatinine, vancomycin, hemoglobin, and hematocrit.The random forest algorithm-based predictive model we developed incorporating important features, including platelet count, serum creatinine level, vancomycin level, hemoglobin level, and hematocrit level, performed the best in predicting AKI among patients with ICH.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
93发布了新的文献求助10
刚刚
xumodehudie完成签到 ,获得积分10
1秒前
2秒前
尛瞐慶成发布了新的文献求助10
3秒前
hj发布了新的文献求助10
4秒前
偶吼吼完成签到,获得积分10
4秒前
5秒前
5秒前
fifteen发布了新的文献求助10
5秒前
LSX完成签到,获得积分10
6秒前
内向的小凡完成签到,获得积分10
6秒前
yy完成签到,获得积分20
7秒前
8秒前
8秒前
重景完成签到 ,获得积分10
8秒前
Stove完成签到,获得积分10
9秒前
研友_VZG7GZ应助乐求知采纳,获得10
9秒前
哦吼完成签到 ,获得积分10
12秒前
FashionBoy应助不当脆脆鲨采纳,获得10
12秒前
刻苦的芝完成签到,获得积分10
13秒前
13秒前
14秒前
努力成为科研大佬完成签到,获得积分10
14秒前
研友_rLmNXn发布了新的文献求助10
16秒前
sumu完成签到,获得积分10
18秒前
19秒前
一枕槐安完成签到 ,获得积分10
19秒前
eau发布了新的文献求助10
19秒前
22秒前
22秒前
23秒前
炙热的白风完成签到,获得积分10
25秒前
Zoe完成签到,获得积分10
25秒前
CipherSage应助Yangzx采纳,获得10
26秒前
小冉发布了新的文献求助10
27秒前
赘婿应助hj采纳,获得10
28秒前
乐求知发布了新的文献求助10
28秒前
28秒前
椰子发布了新的文献求助10
30秒前
31秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053642
求助须知:如何正确求助?哪些是违规求助? 2710842
关于积分的说明 7423746
捐赠科研通 2355391
什么是DOI,文献DOI怎么找? 1247143
科研通“疑难数据库(出版商)”最低求助积分说明 606239
版权声明 595992