Prediction of Acute Kidney Injury in Intracerebral Hemorrhage Patients Using Machine Learning

医学 队列 脑出血 随机森林 急性肾损伤 接收机工作特性 机器学习 入射(几何) 逻辑回归 算法 人工智能 梯度升压 急诊医学 内科学 蛛网膜下腔出血 计算机科学 物理 光学
作者
Suhua She,Yulong Shen,Kun Luo,Xiaohai Zhang,Changjun Luo
出处
期刊:Neuropsychiatric Disease and Treatment [Dove Medical Press]
卷期号:Volume 19: 2765-2773 被引量:5
标识
DOI:10.2147/ndt.s439549
摘要

Acute kidney injury (AKI) is prevalent in patients with intracerebral hemorrhage (ICH) and is associated with mortality. This study aimed to verify the predictive accuracy of different machine learning algorithms for AKI in patients with ICH using a large dataset.A total of 1366 ICH patients received treatments between 2001 and 2012 from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were identified based on the ICD-9 code: 431. The main outcome of AKI during hospitalizations was confirmed based on the KDIGO criteria. Overall, ICH patients were randomly divided into the training cohort and validation cohort with the ratio of 7:3. Six machine learning algorithms including extreme gradient boosting, logistic, light gradient boosting machine, random forest, adaptive boosting, support vector machine were trained in the training cohort with the 5-fold cross-validation method to predict the AKI. The predictive accuracy of those algorithms was compared by area under the receiver operating characteristics curve (AUC).A total of 1213 ICH patients were included with the incidence of AKI being 29.3%. The incidence of AKI was 29.3% among the 1213 patients with ICH. The AKI group had higher 30-day mortality (p<0.001), longer ICU stay (p<0.001), and longer hospital stay (p<0.001). Among the six machine learning algorithms, the random forest performed the best in predicting AKI in both the training cohort (AUC=1.000) and the validation cohort (AUC=0.698). The top five features in the random forest algorithm-based model were platelets, serum creatinine, vancomycin, hemoglobin, and hematocrit.The random forest algorithm-based predictive model we developed incorporating important features, including platelet count, serum creatinine level, vancomycin level, hemoglobin level, and hematocrit level, performed the best in predicting AKI among patients with ICH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinble发布了新的文献求助10
刚刚
上官若男应助沙洲采纳,获得10
刚刚
XUYQ发布了新的文献求助10
刚刚
闪闪平文完成签到 ,获得积分10
刚刚
aca发布了新的文献求助20
1秒前
与闲完成签到,获得积分10
1秒前
2秒前
qin完成签到 ,获得积分10
2秒前
逃之姚姚发布了新的文献求助10
2秒前
碧蓝怜梦完成签到 ,获得积分10
2秒前
热心树叶应助爱在西元前采纳,获得50
3秒前
月影碎星河完成签到,获得积分10
4秒前
4秒前
李健应助祁琪采纳,获得10
5秒前
rainbow5432完成签到 ,获得积分10
6秒前
6秒前
yulong发布了新的文献求助10
6秒前
6秒前
吱吱吱吱完成签到 ,获得积分10
7秒前
kkk驳回了wanci应助
7秒前
7秒前
xgx984完成签到,获得积分10
7秒前
乔滴滴完成签到 ,获得积分10
8秒前
Lin应助阳光襄采纳,获得10
9秒前
斯文败类应助刘畅采纳,获得10
9秒前
学术小白完成签到,获得积分20
9秒前
10秒前
10秒前
11秒前
12秒前
12秒前
风中凌旋应助爱在西元前采纳,获得10
12秒前
yulong完成签到,获得积分10
13秒前
小李发布了新的文献求助10
13秒前
13秒前
easy发布了新的文献求助10
13秒前
14秒前
咸蛋黄味曲奇完成签到,获得积分10
15秒前
NexusExplorer应助啾啾采纳,获得10
15秒前
廖怡星完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578485
求助须知:如何正确求助?哪些是违规求助? 4663329
关于积分的说明 14746065
捐赠科研通 4604137
什么是DOI,文献DOI怎么找? 2526852
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465760