Prediction of Acute Kidney Injury in Intracerebral Hemorrhage Patients Using Machine Learning

医学 队列 脑出血 随机森林 急性肾损伤 接收机工作特性 机器学习 入射(几何) 逻辑回归 算法 人工智能 梯度升压 急诊医学 内科学 蛛网膜下腔出血 计算机科学 物理 光学
作者
Suhua She,Yulong Shen,Kun Luo,Xiaohai Zhang,Changjun Luo
出处
期刊:Neuropsychiatric Disease and Treatment [Dove Medical Press]
卷期号:Volume 19: 2765-2773 被引量:5
标识
DOI:10.2147/ndt.s439549
摘要

Acute kidney injury (AKI) is prevalent in patients with intracerebral hemorrhage (ICH) and is associated with mortality. This study aimed to verify the predictive accuracy of different machine learning algorithms for AKI in patients with ICH using a large dataset.A total of 1366 ICH patients received treatments between 2001 and 2012 from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were identified based on the ICD-9 code: 431. The main outcome of AKI during hospitalizations was confirmed based on the KDIGO criteria. Overall, ICH patients were randomly divided into the training cohort and validation cohort with the ratio of 7:3. Six machine learning algorithms including extreme gradient boosting, logistic, light gradient boosting machine, random forest, adaptive boosting, support vector machine were trained in the training cohort with the 5-fold cross-validation method to predict the AKI. The predictive accuracy of those algorithms was compared by area under the receiver operating characteristics curve (AUC).A total of 1213 ICH patients were included with the incidence of AKI being 29.3%. The incidence of AKI was 29.3% among the 1213 patients with ICH. The AKI group had higher 30-day mortality (p<0.001), longer ICU stay (p<0.001), and longer hospital stay (p<0.001). Among the six machine learning algorithms, the random forest performed the best in predicting AKI in both the training cohort (AUC=1.000) and the validation cohort (AUC=0.698). The top five features in the random forest algorithm-based model were platelets, serum creatinine, vancomycin, hemoglobin, and hematocrit.The random forest algorithm-based predictive model we developed incorporating important features, including platelet count, serum creatinine level, vancomycin level, hemoglobin level, and hematocrit level, performed the best in predicting AKI among patients with ICH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
Tourist应助科研通管家采纳,获得150
刚刚
Xiaoxiao应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得30
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
Koalas应助科研通管家采纳,获得20
1秒前
浮游应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
Tourist应助科研通管家采纳,获得150
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
虚拟小号完成签到,获得积分0
1秒前
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
欢喜皮卡丘完成签到,获得积分10
2秒前
一洼清泉完成签到,获得积分10
3秒前
哈基米德应助Du采纳,获得20
3秒前
4秒前
米龙完成签到,获得积分10
6秒前
zhaohu47发布了新的文献求助10
6秒前
FashionBoy应助lingyao采纳,获得10
6秒前
6秒前
7秒前
开花结果发布了新的文献求助10
7秒前
好困a完成签到 ,获得积分10
8秒前
啦啦啦完成签到,获得积分10
8秒前
Becca发布了新的文献求助50
9秒前
10秒前
10秒前
ding应助宥兹采纳,获得10
11秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086463
求助须知:如何正确求助?哪些是违规求助? 4302233
关于积分的说明 13407203
捐赠科研通 4127429
什么是DOI,文献DOI怎么找? 2260309
邀请新用户注册赠送积分活动 1264536
关于科研通互助平台的介绍 1198741