亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large Language Model Empowered by Domain-Specific Knowledge Base for Industrial Equipment Operation and Maintenance

故障排除 计算机科学 知识库 风险分析(工程) 自动化 稳健性(进化) 工程类 人工智能 业务 生物化学 机械工程 基因 操作系统 化学
作者
Huan Wang,Yan‐Fu Li
标识
DOI:10.1109/srse59585.2023.10336112
摘要

Industrial equipment operations and maintenance (IEOM) refers to ensuring the normal, safe, and reliable operation of industrial facilities, which covers condition monitoring, equipment maintenance, troubleshooting, repair and maintenance, and system optimization. Currently, the advancements in artificial intelligence have greatly improved the efficiency and effectiveness of IEOM. However, its robustness and generalization in practical applications still need to be improved. Large language models (LLMs) like ChatGPT have recently made breakthrough progress, demonstrating highly intelligent language comprehension capabilities. Therefore, they are expected to drive a new round of transformation in IEOM, promoting the automation and intelligence of the entire IEOM process. However, when using LLMs for practical industrial applications, existing LLMs have fatal limitations as they severely lack domain-specific expertise. This makes it difficult for LLMs to handle technical issues in the industrial field. To this end, this study explores a new solution: LLMs empowered by domain-specific knowledge base (LLM-DSKB). This paper provides a detailed introduction to the core components and implementation details of LLM-DSKB, including the knowledge base, text embedding, vectorized retrieval, etc. The performance of LLM-DSKB is analyzed using real industrial cases, and the results demonstrate that LLM-DSKB can provide more accurate, specific, and industrially relevant results compared to traditional LLMs. This solution will drive the application of LLMs in the industrial field, significantly enhancing the efficiency, effectiveness, and quality of IEOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HOAN应助辛勤夜柳采纳,获得30
1秒前
2秒前
9秒前
13秒前
辛勤夜柳完成签到,获得积分10
14秒前
杰老爷发布了新的文献求助10
25秒前
117发布了新的文献求助10
28秒前
xky200125完成签到 ,获得积分10
33秒前
我是老大应助wq采纳,获得10
38秒前
58秒前
cling发布了新的文献求助10
1分钟前
1分钟前
多乐多发布了新的文献求助10
1分钟前
1分钟前
Haim4完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
木棉发布了新的文献求助10
2分钟前
2分钟前
无极微光应助刘言采纳,获得20
2分钟前
凡尔赛老痘完成签到,获得积分10
2分钟前
guoguo82完成签到,获得积分10
2分钟前
3分钟前
开放道天发布了新的文献求助10
3分钟前
3分钟前
3分钟前
赘婿应助Mystic采纳,获得10
3分钟前
3分钟前
3分钟前
Mystic发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664293
求助须知:如何正确求助?哪些是违规求助? 4860543
关于积分的说明 15107502
捐赠科研通 4822814
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535979
关于科研通互助平台的介绍 1494205