Large Language Model Empowered by Domain-Specific Knowledge Base for Industrial Equipment Operation and Maintenance

故障排除 计算机科学 知识库 风险分析(工程) 自动化 稳健性(进化) 工程类 人工智能 业务 生物化学 机械工程 基因 操作系统 化学
作者
Huan Wang,Yan‐Fu Li
标识
DOI:10.1109/srse59585.2023.10336112
摘要

Industrial equipment operations and maintenance (IEOM) refers to ensuring the normal, safe, and reliable operation of industrial facilities, which covers condition monitoring, equipment maintenance, troubleshooting, repair and maintenance, and system optimization. Currently, the advancements in artificial intelligence have greatly improved the efficiency and effectiveness of IEOM. However, its robustness and generalization in practical applications still need to be improved. Large language models (LLMs) like ChatGPT have recently made breakthrough progress, demonstrating highly intelligent language comprehension capabilities. Therefore, they are expected to drive a new round of transformation in IEOM, promoting the automation and intelligence of the entire IEOM process. However, when using LLMs for practical industrial applications, existing LLMs have fatal limitations as they severely lack domain-specific expertise. This makes it difficult for LLMs to handle technical issues in the industrial field. To this end, this study explores a new solution: LLMs empowered by domain-specific knowledge base (LLM-DSKB). This paper provides a detailed introduction to the core components and implementation details of LLM-DSKB, including the knowledge base, text embedding, vectorized retrieval, etc. The performance of LLM-DSKB is analyzed using real industrial cases, and the results demonstrate that LLM-DSKB can provide more accurate, specific, and industrially relevant results compared to traditional LLMs. This solution will drive the application of LLMs in the industrial field, significantly enhancing the efficiency, effectiveness, and quality of IEOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助高挑的向真采纳,获得10
刚刚
Jy发布了新的文献求助10
2秒前
2秒前
Duke完成签到 ,获得积分10
3秒前
六六发布了新的文献求助10
3秒前
石头完成签到 ,获得积分10
4秒前
4秒前
小蘑菇应助人民群众采纳,获得10
5秒前
Neuro_dan完成签到,获得积分0
5秒前
伶俐绿柏完成签到 ,获得积分10
5秒前
6秒前
6秒前
ummmmm完成签到,获得积分10
6秒前
7秒前
pb发布了新的文献求助10
7秒前
7秒前
神勇的薯片完成签到,获得积分10
8秒前
想人陪的向南完成签到,获得积分10
8秒前
9秒前
10秒前
英俊的铭应助六六采纳,获得10
11秒前
huk发布了新的文献求助10
11秒前
活力宝马完成签到,获得积分10
11秒前
13秒前
SYLH应助runtang采纳,获得10
13秒前
Hello应助neilhou采纳,获得10
13秒前
田様应助慕南枝采纳,获得10
14秒前
风中的怜阳完成签到,获得积分10
14秒前
孤梦落雨完成签到,获得积分10
16秒前
栗子发布了新的文献求助10
16秒前
平常冬天完成签到,获得积分10
17秒前
bkagyin应助橙汁采纳,获得10
19秒前
20秒前
帅气的新竹完成签到,获得积分10
21秒前
21秒前
墨冉发布了新的文献求助10
22秒前
fine完成签到,获得积分20
22秒前
Migrol完成签到,获得积分10
23秒前
clyhg完成签到,获得积分10
24秒前
Wink14551发布了新的文献求助10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740937
求助须知:如何正确求助?哪些是违规求助? 3283720
关于积分的说明 10036381
捐赠科研通 3000455
什么是DOI,文献DOI怎么找? 1646510
邀请新用户注册赠送积分活动 783711
科研通“疑难数据库(出版商)”最低求助积分说明 750427