Large Language Model Empowered by Domain-Specific Knowledge Base for Industrial Equipment Operation and Maintenance

故障排除 计算机科学 知识库 风险分析(工程) 自动化 稳健性(进化) 工程类 人工智能 业务 生物化学 机械工程 基因 操作系统 化学
作者
Huan Wang,Yan‐Fu Li
标识
DOI:10.1109/srse59585.2023.10336112
摘要

Industrial equipment operations and maintenance (IEOM) refers to ensuring the normal, safe, and reliable operation of industrial facilities, which covers condition monitoring, equipment maintenance, troubleshooting, repair and maintenance, and system optimization. Currently, the advancements in artificial intelligence have greatly improved the efficiency and effectiveness of IEOM. However, its robustness and generalization in practical applications still need to be improved. Large language models (LLMs) like ChatGPT have recently made breakthrough progress, demonstrating highly intelligent language comprehension capabilities. Therefore, they are expected to drive a new round of transformation in IEOM, promoting the automation and intelligence of the entire IEOM process. However, when using LLMs for practical industrial applications, existing LLMs have fatal limitations as they severely lack domain-specific expertise. This makes it difficult for LLMs to handle technical issues in the industrial field. To this end, this study explores a new solution: LLMs empowered by domain-specific knowledge base (LLM-DSKB). This paper provides a detailed introduction to the core components and implementation details of LLM-DSKB, including the knowledge base, text embedding, vectorized retrieval, etc. The performance of LLM-DSKB is analyzed using real industrial cases, and the results demonstrate that LLM-DSKB can provide more accurate, specific, and industrially relevant results compared to traditional LLMs. This solution will drive the application of LLMs in the industrial field, significantly enhancing the efficiency, effectiveness, and quality of IEOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化尔为鸟其名为鹏完成签到 ,获得积分10
刚刚
59号关注了科研通微信公众号
刚刚
1秒前
照相机完成签到,获得积分10
1秒前
跳跃的寻菱完成签到,获得积分10
1秒前
研友_VZG7GZ应助威武的沂采纳,获得10
2秒前
lily_lin发布了新的文献求助10
3秒前
科研通AI2S应助论文通行者采纳,获得10
3秒前
斯文败类应助小宇采纳,获得10
3秒前
SciGPT应助小宇采纳,获得10
3秒前
慕青应助小宇采纳,获得10
3秒前
orixero应助小宇采纳,获得10
3秒前
深情安青应助小宇采纳,获得10
3秒前
wanci应助小宇采纳,获得10
3秒前
领导范儿应助小宇采纳,获得10
3秒前
3秒前
斯文败类应助小宇采纳,获得10
3秒前
打打应助物化小子采纳,获得10
3秒前
华仔应助小宇采纳,获得10
3秒前
CipherSage应助小宇采纳,获得10
3秒前
4秒前
完美世界应助ysy采纳,获得20
5秒前
fbbggb发布了新的文献求助10
6秒前
英俊的铭应助糊糊糊采纳,获得10
6秒前
hywang发布了新的文献求助10
7秒前
豌豆射手发布了新的文献求助10
7秒前
7秒前
勤奋的牛青完成签到,获得积分10
8秒前
ztr发布了新的文献求助10
8秒前
8秒前
平静和满足完成签到 ,获得积分0
9秒前
论文通行者完成签到,获得积分10
10秒前
脑洞疼应助念心采纳,获得10
11秒前
都都yimi发布了新的文献求助30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
领导范儿应助暴躁章鱼采纳,获得10
14秒前
14秒前
orixero应助头孢克肟采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143506
求助须知:如何正确求助?哪些是违规求助? 2794865
关于积分的说明 7812588
捐赠科研通 2450967
什么是DOI,文献DOI怎么找? 1304178
科研通“疑难数据库(出版商)”最低求助积分说明 627193
版权声明 601386