An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy

最小二乘支持向量机 算法 最小二乘函数近似 残余物 粒子群优化 地表径流 均方误差 计算机科学 环境科学 残差平方和 支持向量机 水文学(农业) 数学 统计 生态学 机器学习 工程类 奇异值分解 总最小二乘法 生物 估计员 岩土工程
作者
Dongmei Xu,Li Zong,Wenchuan Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:629: 130558-130558 被引量:12
标识
DOI:10.1016/j.jhydrol.2023.130558
摘要

In order to enhance the runoff prediction accuracy, an ensemble prediction model based on least squares support vector machine (LSSVM) is proposed by including variational mode decomposition (VMD), dung beetle optimization algorithm (DBO), and error correction (EC) strategy. First, the monthly runoff time series is decomposed using DBO-optimized VMD (DVMD), yielding a series of intrinsic mode functions (IMF) series and a residual (Res). Then, the LSSVM based on DBO optimization predicts each sub-series column and residual. The final forecast results are achieved after the preliminary forecast results have been stacked and corrected by the DBO-LSSVM prediction error. To verify the reliability of the proposed model, it is applied to the monthly runoff prediction of the Xiajiang hydrological station in the Ganjiang River Basin, the Hongshanhe hydrological station in the Heihe River Basin, and the Jiayugaun hydrological station in the Heihe River Basin. The proposed model is evaluated using four evaluation indicators: RMSE, MAPE, NSEC, and R, and is compared with SVM, LSSVM, PSO-LSSVM, DBO-LSSVM, EEMD-LSSVM, CEEMDAN-LSSVM, DVMD-LSSVM, EEMD-DBO-LSSVM, CEEMDAN-DBO-LSSVM, and DVMD-DBO-LSSVM. Results show that the DVMD-DBO-LSSVM-EC model has the highest accuracy. During the test period, the NSEC of Xiajiang hydrological station is 0.9829, R is 0.9921, the NSEC of Hongshanhe hydrological station is 0.9981, R is 0.9991, and the NSEC of Jiayugaun hydrological station is 0.9772, R is 0.9897. The prediction effect of the model on the extreme value of the three stations after adding the error correction strategy has increased by 45.14%, 62.22%, and 29.49%, respectively, compared with the previous, which is closer to the actual value. The developed combination model offers a new approach to forecasting monthly runoff and extreme values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心绮兰发布了新的文献求助10
刚刚
累啊完成签到,获得积分10
刚刚
王小元发布了新的文献求助10
刚刚
luogen发布了新的文献求助10
1秒前
1秒前
深情安青应助文艺的冬卉采纳,获得10
1秒前
轻松鸿涛完成签到,获得积分10
1秒前
面包康完成签到 ,获得积分10
2秒前
Doctor_G完成签到,获得积分10
3秒前
脑洞疼应助lvlv采纳,获得10
3秒前
amrothan完成签到,获得积分10
3秒前
leme发布了新的文献求助10
4秒前
spinning完成签到,获得积分10
4秒前
loy完成签到,获得积分10
5秒前
LL发布了新的文献求助10
5秒前
啦啦啦完成签到,获得积分10
5秒前
shadow完成签到,获得积分10
6秒前
科研通AI2S应助Doctor_G采纳,获得10
6秒前
玉鱼儿发布了新的文献求助10
6秒前
7秒前
折花浅笑完成签到,获得积分10
9秒前
CodeCraft应助amrothan采纳,获得10
9秒前
浩多多完成签到,获得积分10
9秒前
逸风完成签到 ,获得积分10
11秒前
114514完成签到 ,获得积分10
11秒前
11秒前
星星完成签到 ,获得积分10
11秒前
Emily完成签到,获得积分10
12秒前
13秒前
14秒前
kkkkk完成签到,获得积分10
15秒前
15秒前
幽迷狂的发胶完成签到,获得积分10
16秒前
17秒前
坚强的曼雁完成签到,获得积分10
18秒前
Wy21完成签到,获得积分10
19秒前
樊小雾发布了新的文献求助10
19秒前
聂学雨发布了新的文献求助10
19秒前
静默完成签到 ,获得积分10
19秒前
科目三应助冷静凌旋采纳,获得30
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
The SAGE Handbook of Qualitative Research 800
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786078
关于积分的说明 7774957
捐赠科研通 2441899
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825