An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy

最小二乘支持向量机 算法 最小二乘函数近似 残余物 粒子群优化 地表径流 均方误差 计算机科学 环境科学 残差平方和 支持向量机 水文学(农业) 数学 统计 生态学 机器学习 工程类 奇异值分解 总最小二乘法 生物 估计员 岩土工程
作者
Dongmei Xu,Li Zong,Wenchuan Wang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:629: 130558-130558 被引量:12
标识
DOI:10.1016/j.jhydrol.2023.130558
摘要

In order to enhance the runoff prediction accuracy, an ensemble prediction model based on least squares support vector machine (LSSVM) is proposed by including variational mode decomposition (VMD), dung beetle optimization algorithm (DBO), and error correction (EC) strategy. First, the monthly runoff time series is decomposed using DBO-optimized VMD (DVMD), yielding a series of intrinsic mode functions (IMF) series and a residual (Res). Then, the LSSVM based on DBO optimization predicts each sub-series column and residual. The final forecast results are achieved after the preliminary forecast results have been stacked and corrected by the DBO-LSSVM prediction error. To verify the reliability of the proposed model, it is applied to the monthly runoff prediction of the Xiajiang hydrological station in the Ganjiang River Basin, the Hongshanhe hydrological station in the Heihe River Basin, and the Jiayugaun hydrological station in the Heihe River Basin. The proposed model is evaluated using four evaluation indicators: RMSE, MAPE, NSEC, and R, and is compared with SVM, LSSVM, PSO-LSSVM, DBO-LSSVM, EEMD-LSSVM, CEEMDAN-LSSVM, DVMD-LSSVM, EEMD-DBO-LSSVM, CEEMDAN-DBO-LSSVM, and DVMD-DBO-LSSVM. Results show that the DVMD-DBO-LSSVM-EC model has the highest accuracy. During the test period, the NSEC of Xiajiang hydrological station is 0.9829, R is 0.9921, the NSEC of Hongshanhe hydrological station is 0.9981, R is 0.9991, and the NSEC of Jiayugaun hydrological station is 0.9772, R is 0.9897. The prediction effect of the model on the extreme value of the three stations after adding the error correction strategy has increased by 45.14%, 62.22%, and 29.49%, respectively, compared with the previous, which is closer to the actual value. The developed combination model offers a new approach to forecasting monthly runoff and extreme values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自由如风完成签到 ,获得积分10
刚刚
小马甲应助急雪回风采纳,获得10
刚刚
1秒前
1秒前
自由人发布了新的文献求助10
1秒前
忧郁水彤发布了新的文献求助10
2秒前
浮游应助狄鹤轩采纳,获得10
2秒前
十令发布了新的文献求助10
2秒前
里应为发布了新的文献求助10
3秒前
hua发布了新的文献求助10
3秒前
善学以致用应助jzd1991采纳,获得10
3秒前
xl完成签到,获得积分10
3秒前
3秒前
duyu完成签到,获得积分10
4秒前
不安依丝完成签到,获得积分10
4秒前
4秒前
研友_Lpa2On发布了新的文献求助10
4秒前
4秒前
qzs发布了新的文献求助10
5秒前
5秒前
852应助Villanellel采纳,获得10
5秒前
duyu发布了新的文献求助10
7秒前
传奇3应助提笔写未来C采纳,获得10
8秒前
春暖花开完成签到,获得积分10
8秒前
研友_nV2pkn发布了新的文献求助10
8秒前
joodeuk发布了新的文献求助10
8秒前
Denmark发布了新的文献求助10
9秒前
9秒前
正直芝麻完成签到,获得积分20
9秒前
pluto应助nnnd77采纳,获得10
9秒前
霖夏完成签到 ,获得积分10
10秒前
FashionBoy应助vn采纳,获得10
10秒前
善学以致用应助XXXTTT采纳,获得10
10秒前
小情绪应助狂野的夏柳采纳,获得10
10秒前
10秒前
顾矜应助火星上藏鸟采纳,获得10
11秒前
王玥荟发布了新的文献求助10
11秒前
11秒前
不安依丝发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4874504
求助须知:如何正确求助?哪些是违规求助? 4163770
关于积分的说明 12915000
捐赠科研通 3920917
什么是DOI,文献DOI怎么找? 2152576
邀请新用户注册赠送积分活动 1170846
关于科研通互助平台的介绍 1074699