已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy

最小二乘支持向量机 算法 最小二乘函数近似 残余物 粒子群优化 地表径流 均方误差 计算机科学 环境科学 残差平方和 支持向量机 水文学(农业) 数学 统计 生态学 机器学习 工程类 奇异值分解 总最小二乘法 生物 估计员 岩土工程
作者
Dongmei Xu,Li Zong,Wenchuan Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:629: 130558-130558 被引量:12
标识
DOI:10.1016/j.jhydrol.2023.130558
摘要

In order to enhance the runoff prediction accuracy, an ensemble prediction model based on least squares support vector machine (LSSVM) is proposed by including variational mode decomposition (VMD), dung beetle optimization algorithm (DBO), and error correction (EC) strategy. First, the monthly runoff time series is decomposed using DBO-optimized VMD (DVMD), yielding a series of intrinsic mode functions (IMF) series and a residual (Res). Then, the LSSVM based on DBO optimization predicts each sub-series column and residual. The final forecast results are achieved after the preliminary forecast results have been stacked and corrected by the DBO-LSSVM prediction error. To verify the reliability of the proposed model, it is applied to the monthly runoff prediction of the Xiajiang hydrological station in the Ganjiang River Basin, the Hongshanhe hydrological station in the Heihe River Basin, and the Jiayugaun hydrological station in the Heihe River Basin. The proposed model is evaluated using four evaluation indicators: RMSE, MAPE, NSEC, and R, and is compared with SVM, LSSVM, PSO-LSSVM, DBO-LSSVM, EEMD-LSSVM, CEEMDAN-LSSVM, DVMD-LSSVM, EEMD-DBO-LSSVM, CEEMDAN-DBO-LSSVM, and DVMD-DBO-LSSVM. Results show that the DVMD-DBO-LSSVM-EC model has the highest accuracy. During the test period, the NSEC of Xiajiang hydrological station is 0.9829, R is 0.9921, the NSEC of Hongshanhe hydrological station is 0.9981, R is 0.9991, and the NSEC of Jiayugaun hydrological station is 0.9772, R is 0.9897. The prediction effect of the model on the extreme value of the three stations after adding the error correction strategy has increased by 45.14%, 62.22%, and 29.49%, respectively, compared with the previous, which is closer to the actual value. The developed combination model offers a new approach to forecasting monthly runoff and extreme values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XDSH完成签到 ,获得积分10
4秒前
默默善愁发布了新的文献求助100
4秒前
8秒前
9秒前
9秒前
BowieHuang应助称心的冰安采纳,获得30
10秒前
优雅的苹果完成签到 ,获得积分10
11秒前
流水z完成签到 ,获得积分10
11秒前
天天发布了新的文献求助10
12秒前
花开富贵完成签到 ,获得积分10
20秒前
Lisiqi完成签到,获得积分10
21秒前
22秒前
科研通AI6应助柚柚采纳,获得10
23秒前
123123完成签到 ,获得积分10
23秒前
23秒前
kk完成签到,获得积分10
27秒前
27秒前
吃葡萄不吐葡萄皮给吃葡萄不吐葡萄皮的求助进行了留言
29秒前
kikichiu发布了新的文献求助50
29秒前
科研通AI6应助孤独的幻桃采纳,获得10
31秒前
Colinlau发布了新的文献求助10
34秒前
35秒前
李健的小迷弟应助西瓜刀采纳,获得30
41秒前
ssz完成签到,获得积分10
44秒前
开朗的哈密瓜完成签到 ,获得积分10
45秒前
脑洞疼应助Colinlau采纳,获得30
46秒前
ding应助勤奋的琳采纳,获得10
47秒前
上岸的追风完成签到,获得积分20
48秒前
48秒前
52秒前
惊鸿H完成签到 ,获得积分10
53秒前
脑洞疼应助May采纳,获得10
55秒前
米龙完成签到,获得积分10
55秒前
55秒前
Evelyn_66完成签到,获得积分10
56秒前
57秒前
59秒前
59秒前
1分钟前
Evelyn_66发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538374
求助须知:如何正确求助?哪些是违规求助? 4625516
关于积分的说明 14596112
捐赠科研通 4566095
什么是DOI,文献DOI怎么找? 2502975
邀请新用户注册赠送积分活动 1481266
关于科研通互助平台的介绍 1452503