Multi-scale experimental analysis on the coupled effects of ultrasonic field and magnetic field on the melting and energy storage performances for hybrid nano-enhanced phase change materials

强化传热 传热 超声波传感器 材料科学 磁场 热力学 传热系数 物理 声学 量子力学
作者
Hexin Li,Yijie Zhuang,Jing‐Chun Feng
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:84: 110801-110801 被引量:9
标识
DOI:10.1016/j.est.2024.110801
摘要

This study experimentally investigates the coupled effect of ultrasonic field and magnetic field on the melting performance of magnetic (Fe3O4) and non-magnetic (Al2O3) HNEPCM by means of infrared thermography and EDS element identification. A visualization platform is built to evaluate the interconnections between the dynamic evolution of melting fronts, heat transfer mechanisms and phase change performances of HNEPCM subjected to different external field strategies. The results demonstrate that the ultrasonic field allows the activation of the flow heat transfer process in the liquid region through cavitation and acoustic flow effects, enabling more homogeneous nanoparticle dispersion and greater heat transfer efficiency. Moreover, the more ultrasonic power is applied, the shorter the phase change process takes place, which is reduced by 10.18 %, 57.52 %, 66.37 %, 72.13 % for 0 W, 16 W, 32 W, 48 W, respectively, comparing to pure PCM case. Magnetic field actively regulates the distribution of magnetic and non-magnetic nanoparticles at the melting front, forming nanoparticle "thermal conduction layer" and reducing non-Newtonian effect. The coupled effect draws on their characteristics, the heat transfer performance is enhanced in the early stage but suppressed in the later stage compared with 16 W ultrasonic field case. In comparison with pure PCM, the melting time is reduced by 52.2 % and TES efficiency is improved by 72.7 %. From the comprehensive point of view, although the coupled effect owns great potentials in controllability, the 48 W middle ultrasonic strategy harvest the greatest improvement with the exceptional heat transfer capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快来拾糖完成签到 ,获得积分10
2秒前
我是老大应助月宸采纳,获得10
2秒前
爆米花应助龙研采纳,获得10
2秒前
4秒前
seven发布了新的文献求助10
6秒前
白鸽鸽发布了新的文献求助10
8秒前
风语村发布了新的文献求助10
10秒前
11秒前
田様应助seven采纳,获得10
12秒前
14秒前
ella完成签到,获得积分20
17秒前
18秒前
18秒前
斯文白梦完成签到 ,获得积分10
18秒前
简单的八宝粥完成签到,获得积分10
18秒前
20秒前
大意的绿蓉完成签到,获得积分10
22秒前
gu发布了新的文献求助10
23秒前
24秒前
聪慧的香魔关注了科研通微信公众号
24秒前
livra1058完成签到,获得积分10
24秒前
25秒前
彭三忘发布了新的文献求助10
26秒前
Wanyin完成签到,获得积分10
27秒前
GC完成签到,获得积分10
28秒前
28秒前
super chan发布了新的文献求助10
31秒前
Tink完成签到,获得积分10
32秒前
April发布了新的文献求助10
33秒前
爆米花应助爱上人家四月采纳,获得10
33秒前
目土土发布了新的文献求助10
34秒前
州州完成签到,获得积分10
34秒前
禾盒发布了新的文献求助10
35秒前
上彐下火完成签到 ,获得积分10
36秒前
36秒前
gzj发布了新的文献求助10
36秒前
37秒前
39秒前
40秒前
彭三忘完成签到,获得积分10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296