Spatial-temporal-demand clustering for solving large-scale vehicle routing problems with time windows

车辆路径问题 聚类分析 比例(比率) 计算机科学 时间旅行 布线(电子设计自动化) 地理 人工智能 地图学 计算机网络
作者
Christoph Kerscher,Stefan Minner
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.00041
摘要

Several metaheuristics use decomposition and pruning strategies to solve large-scale instances of the vehicle routing problem (VRP). Those complexity reduction techniques often rely on simple, problem-specific rules. However, the growth in available data and advances in computer hardware enable data-based approaches that use machine learning (ML) to improve scalability of solution algorithms. We propose a decompose-route-improve (DRI) framework that groups customers using clustering. Its similarity metric incorporates customers' spatial, temporal, and demand data and is formulated to reflect the problem's objective function and constraints. The resulting sub-routing problems can independently be solved using any suitable algorithm. We apply pruned local search (LS) between solved subproblems to improve the overall solution. Pruning is based on customers' similarity information obtained in the decomposition phase. In a computational study, we parameterize and compare existing clustering algorithms and benchmark the DRI against the Hybrid Genetic Search (HGS) of Vidal et al. (2013). Results show that our data-based approach outperforms classic cluster-first, route-second approaches solely based on customers' spatial information. The newly introduced similarity metric forms separate sub-VRPs and improves the selection of LS moves in the improvement phase. Thus, the DRI scales existing metaheuristics to achieve high-quality solutions faster for large-scale VRPs by efficiently reducing complexity. Further, the DRI can be easily adapted to various solution methods and VRP characteristics, such as distribution of customer locations and demands, depot location, and different time window scenarios, making it a generalizable approach to solving routing problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ADAN完成签到,获得积分10
刚刚
雪山飞龙发布了新的文献求助10
1秒前
西瓜太郎君完成签到,获得积分10
1秒前
1秒前
1秒前
蘑菇驳回了Aowu应助
1秒前
xie123关注了科研通微信公众号
2秒前
呵呵呵呵完成签到,获得积分10
2秒前
调皮的天真完成签到,获得积分10
2秒前
无语的采柳完成签到 ,获得积分10
2秒前
2秒前
哈罗完成签到,获得积分10
2秒前
3秒前
多情蓝发布了新的文献求助10
3秒前
黑炭球完成签到,获得积分10
3秒前
虚拟的鞋垫完成签到,获得积分10
3秒前
糖果苏扬完成签到 ,获得积分10
4秒前
xdd完成签到,获得积分10
4秒前
4秒前
八杯水完成签到,获得积分10
4秒前
zhou完成签到 ,获得积分10
4秒前
隔壁巷子里的劉完成签到 ,获得积分10
4秒前
我我我完成签到 ,获得积分10
5秒前
Owen应助微生采纳,获得10
6秒前
东北饿霸完成签到,获得积分10
6秒前
CodeCraft应助蝉鸣采纳,获得10
6秒前
HY完成签到 ,获得积分10
6秒前
实验好难完成签到,获得积分0
6秒前
7秒前
细胞色素应助77采纳,获得20
7秒前
yuki完成签到 ,获得积分10
8秒前
8秒前
lei.qin完成签到 ,获得积分10
8秒前
Apr9810h发布了新的文献求助10
8秒前
281911480完成签到,获得积分10
8秒前
ZHUTOU完成签到,获得积分10
9秒前
自由伊完成签到,获得积分10
9秒前
YY完成签到 ,获得积分10
9秒前
婷婷完成签到,获得积分10
9秒前
无幻完成签到 ,获得积分10
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729435
求助须知:如何正确求助?哪些是违规求助? 3274538
关于积分的说明 9986118
捐赠科研通 2989669
什么是DOI,文献DOI怎么找? 1640718
邀请新用户注册赠送积分活动 779303
科研通“疑难数据库(出版商)”最低求助积分说明 748188