电解质
材料科学
纳米纤维
多孔性
环氧乙烷
化学工程
复合数
热液循环
氧化物
纳米技术
化学
复合材料
聚合物
电极
冶金
物理化学
工程类
共聚物
作者
Liyuan Wang,Liyuan Xie,Lingli Dong,Zhitao Wang,Linpo Li,Enbo Shangguan,Jing Li,Shengbo Gao
标识
DOI:10.1016/j.jcis.2023.12.003
摘要
Novel structural designs for metal organic frameworks (MOFs) are expected to improve ion-transport behavior in composite solid electrolytes. Herein, upper-dimensional MIL-53(Al) nanofibers (MNFs, MIL-53 belongs to the MIL (Material Institute Lavoisier) group) with flower-like nanoflake structures have been designed and constructed via modified hydrothermal coordination. The optimized MNFs with high surface area and porosity can form abundant interfaces with poly(ethylene oxide) (PEO) matrix. The plasticization of MNFs to the PEO matrix will facilitate segmental movement of PEO chains to facilitate Li+ conduction. The unsaturated open metal centers of MNFs can effectively capture bis(trifluoromethanesulfonyl)imide anions (TFSI−) to deliver more free lithium ions for transfer. Moreover, the upper-dimensional nanofiber structure endows lithium ions with a long-range and consecutive transport pathway. The obtained composite solid electrolyte (MNFs@PEO) presents a high ionic conductivity of 4.1 × 10−4 S cm−1 and a great Li+ transference number of 0.4 at 60 °C. The electrolyte also exhibits a stable Li plating/stripping behavior over 1000 h at 0.1 mA cm−1 with inhibited Li dendrite growth. Furthermore, the Li/LiFePO4 and Li/LiNi0.8Mn0.1Co0.1O2 batteries with MNFs@PEO as electrolytes both display great cycling stabilities with high-capacity retention, indicating their potential applications in lithium metal batteries. The study will put forward new inspirations for designing advanced MOF-based composite solid electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI