亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PCA-Res2Net Model-Based Method for Damage Detection of CFRP Using Electrical Impedance Tomography

电阻抗断层成像 Tikhonov正则化 迭代重建 特征提取 人工智能 主成分分析 模式识别(心理学) 计算机科学 反问题 特征(语言学) 算法 断层摄影术 数学 物理 哲学 数学分析 光学 语言学
作者
Qian Xue,C. L. Philip Chen,Wenru Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:2
标识
DOI:10.1109/tim.2023.3336759
摘要

Electrical Impedance Tomography (EIT) has become a new inspection tool for damage detection in Carbon Fiber Reinforced Polymer (CFRP) composites. However, the inverse problem of EIT is severely non-linear, ill-posed, and underdetermined, limiting the resolution and accuracy of images reconstructed with EIT. To solve the above problems, a PCA-Res2Net algorithm for CFRP damage detection based on Res2Net structure is presented, which consists of three modules: initial imaging, data dimension reduction and deep feature extraction. Firstly, L1 regularization algorithm is used to map the voltage measurement value to the conductivity distribution for preliminary damage imaging; Then, principal component analysis (PCA) is used to perform feature analysis on the conductivity distribution data for removing redundant background information and achieving data dimensionality reduction; Finally, the simplified image data is inputted into Res2Net for deep feature extraction. Three traditional EIT image reconstruction algorithms (Tikhonov, Conjugate Gradient, L1) and a deep learning algorithm (Invertible Neural Networks, INN) are compared and analyzed with the PCA-Res2Net algorithm. Simulation results demonstrated that the PCA-Res2Net algorithm yield more satisfying reconstructions, and its Correlation Coefficient (CC) and Structure Similarity Index Measure (SSIM) both exceed 97%. Compared with INN, the SSIM and CC of PCA-Res2Net achieved maximum improvements of 8.87% and 19.76% respectively. To further verify the feasibility of the proposed method, a 16-electrode EIT experimental platform is built to detect the damage samples of CFRP laminates. Experimental results demonstrated that the PCA-Res2Net model can effectively reduce the artifacts of the reconstructed images, improve the damage recognition accuracy and edge clarity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君兰完成签到,获得积分10
1秒前
2秒前
4秒前
slby完成签到 ,获得积分10
5秒前
君兰发布了新的文献求助10
7秒前
友好碧完成签到 ,获得积分10
9秒前
乐观的月亮完成签到,获得积分10
14秒前
14秒前
zhuxiaoyue发布了新的文献求助10
14秒前
打打应助辉辉采纳,获得10
14秒前
美美完成签到,获得积分20
16秒前
19秒前
21秒前
23秒前
BeanHahn发布了新的文献求助10
23秒前
24秒前
阿离完成签到,获得积分10
25秒前
27秒前
无题完成签到,获得积分10
27秒前
辉辉发布了新的文献求助10
28秒前
30秒前
31秒前
33秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
小蘑菇应助科研通管家采纳,获得10
34秒前
35秒前
36秒前
chenyue233完成签到,获得积分10
36秒前
specium发布了新的文献求助10
38秒前
chenyue233发布了新的文献求助10
42秒前
大个应助ECD采纳,获得10
43秒前
44秒前
49秒前
BeanHahn完成签到,获得积分10
52秒前
_u_ii发布了新的文献求助10
53秒前
辉辉完成签到,获得积分10
53秒前
55秒前
Orange应助Eris采纳,获得10
56秒前
59秒前
zcr完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671