PCA-Res2Net Model-Based Method for Damage Detection of CFRP Using Electrical Impedance Tomography

电阻抗断层成像 Tikhonov正则化 迭代重建 特征提取 人工智能 主成分分析 模式识别(心理学) 计算机科学 反问题 特征(语言学) 算法 断层摄影术 数学 物理 哲学 数学分析 光学 语言学
作者
Qian Xue,C. L. Philip Chen,Wenru Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:2
标识
DOI:10.1109/tim.2023.3336759
摘要

Electrical Impedance Tomography (EIT) has become a new inspection tool for damage detection in Carbon Fiber Reinforced Polymer (CFRP) composites. However, the inverse problem of EIT is severely non-linear, ill-posed, and underdetermined, limiting the resolution and accuracy of images reconstructed with EIT. To solve the above problems, a PCA-Res2Net algorithm for CFRP damage detection based on Res2Net structure is presented, which consists of three modules: initial imaging, data dimension reduction and deep feature extraction. Firstly, L1 regularization algorithm is used to map the voltage measurement value to the conductivity distribution for preliminary damage imaging; Then, principal component analysis (PCA) is used to perform feature analysis on the conductivity distribution data for removing redundant background information and achieving data dimensionality reduction; Finally, the simplified image data is inputted into Res2Net for deep feature extraction. Three traditional EIT image reconstruction algorithms (Tikhonov, Conjugate Gradient, L1) and a deep learning algorithm (Invertible Neural Networks, INN) are compared and analyzed with the PCA-Res2Net algorithm. Simulation results demonstrated that the PCA-Res2Net algorithm yield more satisfying reconstructions, and its Correlation Coefficient (CC) and Structure Similarity Index Measure (SSIM) both exceed 97%. Compared with INN, the SSIM and CC of PCA-Res2Net achieved maximum improvements of 8.87% and 19.76% respectively. To further verify the feasibility of the proposed method, a 16-electrode EIT experimental platform is built to detect the damage samples of CFRP laminates. Experimental results demonstrated that the PCA-Res2Net model can effectively reduce the artifacts of the reconstructed images, improve the damage recognition accuracy and edge clarity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助aaaaaa采纳,获得10
3秒前
Meredith应助halcyon采纳,获得10
3秒前
雪途发布了新的文献求助10
4秒前
Linda发布了新的文献求助10
5秒前
科研通AI2S应助爱学习采纳,获得10
5秒前
8秒前
慕青应助调皮的千万采纳,获得10
9秒前
10秒前
10秒前
汉堡包应助zlp采纳,获得10
12秒前
12秒前
13秒前
13秒前
landolu发布了新的文献求助10
14秒前
呼噜噜发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
18秒前
19秒前
雪途完成签到,获得积分10
19秒前
Linda完成签到,获得积分10
20秒前
Liben发布了新的文献求助10
21秒前
大胆遥发布了新的文献求助10
22秒前
隐形曼青应助shy采纳,获得10
25秒前
霸气雪珍完成签到,获得积分10
28秒前
朴素的小霸王完成签到,获得积分20
28秒前
29秒前
脑洞疼应助浚稚采纳,获得10
31秒前
32秒前
32秒前
学术蝗虫发布了新的文献求助10
34秒前
劲秉应助淡然的夜柳采纳,获得30
36秒前
逆风起笔完成签到 ,获得积分10
37秒前
37秒前
思源应助asd采纳,获得10
38秒前
OncE发布了新的文献求助10
38秒前
38秒前
研友_VZG7GZ应助安详的冰彤采纳,获得10
40秒前
44秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343067
求助须知:如何正确求助?哪些是违规求助? 2970100
关于积分的说明 8642882
捐赠科研通 2650096
什么是DOI,文献DOI怎么找? 1451115
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407