PCA-Res2Net Model-Based Method for Damage Detection of CFRP Using Electrical Impedance Tomography

电阻抗断层成像 Tikhonov正则化 迭代重建 特征提取 人工智能 主成分分析 模式识别(心理学) 计算机科学 反问题 特征(语言学) 算法 断层摄影术 数学 物理 哲学 数学分析 光学 语言学
作者
Qian Xue,C. L. Philip Chen,Wenru Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:2
标识
DOI:10.1109/tim.2023.3336759
摘要

Electrical Impedance Tomography (EIT) has become a new inspection tool for damage detection in Carbon Fiber Reinforced Polymer (CFRP) composites. However, the inverse problem of EIT is severely non-linear, ill-posed, and underdetermined, limiting the resolution and accuracy of images reconstructed with EIT. To solve the above problems, a PCA-Res2Net algorithm for CFRP damage detection based on Res2Net structure is presented, which consists of three modules: initial imaging, data dimension reduction and deep feature extraction. Firstly, L1 regularization algorithm is used to map the voltage measurement value to the conductivity distribution for preliminary damage imaging; Then, principal component analysis (PCA) is used to perform feature analysis on the conductivity distribution data for removing redundant background information and achieving data dimensionality reduction; Finally, the simplified image data is inputted into Res2Net for deep feature extraction. Three traditional EIT image reconstruction algorithms (Tikhonov, Conjugate Gradient, L1) and a deep learning algorithm (Invertible Neural Networks, INN) are compared and analyzed with the PCA-Res2Net algorithm. Simulation results demonstrated that the PCA-Res2Net algorithm yield more satisfying reconstructions, and its Correlation Coefficient (CC) and Structure Similarity Index Measure (SSIM) both exceed 97%. Compared with INN, the SSIM and CC of PCA-Res2Net achieved maximum improvements of 8.87% and 19.76% respectively. To further verify the feasibility of the proposed method, a 16-electrode EIT experimental platform is built to detect the damage samples of CFRP laminates. Experimental results demonstrated that the PCA-Res2Net model can effectively reduce the artifacts of the reconstructed images, improve the damage recognition accuracy and edge clarity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助单纯的柚子采纳,获得10
刚刚
曹梓聪完成签到,获得积分10
刚刚
慕青应助受伤的擎宇采纳,获得10
1秒前
Grace完成签到,获得积分10
1秒前
SciGPT应助qian采纳,获得20
1秒前
1秒前
常尽欢完成签到 ,获得积分10
2秒前
rayan完成签到,获得积分10
3秒前
大恩区完成签到,获得积分10
3秒前
3秒前
我不吃发布了新的文献求助10
3秒前
芊芊完成签到 ,获得积分0
4秒前
Niaobo完成签到,获得积分10
4秒前
胡大嘴先生完成签到,获得积分10
5秒前
LZH发布了新的文献求助10
5秒前
6秒前
还活着发布了新的文献求助10
7秒前
Yoki完成签到,获得积分10
8秒前
kkk完成签到,获得积分20
8秒前
清秀含羞草完成签到,获得积分10
9秒前
zsyhcl应助风筝采纳,获得10
10秒前
热心的十二完成签到 ,获得积分10
10秒前
燕燕于飞完成签到,获得积分10
11秒前
香蕉觅云应助水123采纳,获得10
12秒前
合适尔风完成签到,获得积分10
12秒前
隐形曼青应助王瑞采纳,获得10
12秒前
nako7575完成签到,获得积分10
13秒前
心想事成完成签到 ,获得积分0
14秒前
彭于晏应助LZH采纳,获得10
14秒前
14秒前
英俊的铭应助cui采纳,获得10
16秒前
ldkshifo完成签到,获得积分10
16秒前
yoyo20012623完成签到,获得积分10
17秒前
17秒前
123完成签到,获得积分10
18秒前
Liuruijia完成签到 ,获得积分10
18秒前
上官若男应助孙嘉畯采纳,获得10
18秒前
18秒前
Jupiter完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603665
求助须知:如何正确求助?哪些是违规求助? 4688648
关于积分的说明 14855380
捐赠科研通 4694577
什么是DOI,文献DOI怎么找? 2540936
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471814