PCA-Res2Net Model-Based Method for Damage Detection of CFRP Using Electrical Impedance Tomography

电阻抗断层成像 Tikhonov正则化 迭代重建 特征提取 人工智能 主成分分析 模式识别(心理学) 计算机科学 反问题 特征(语言学) 算法 断层摄影术 数学 物理 哲学 数学分析 光学 语言学
作者
Qian Xue,C. L. Philip Chen,Wenru Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:2
标识
DOI:10.1109/tim.2023.3336759
摘要

Electrical Impedance Tomography (EIT) has become a new inspection tool for damage detection in Carbon Fiber Reinforced Polymer (CFRP) composites. However, the inverse problem of EIT is severely non-linear, ill-posed, and underdetermined, limiting the resolution and accuracy of images reconstructed with EIT. To solve the above problems, a PCA-Res2Net algorithm for CFRP damage detection based on Res2Net structure is presented, which consists of three modules: initial imaging, data dimension reduction and deep feature extraction. Firstly, L1 regularization algorithm is used to map the voltage measurement value to the conductivity distribution for preliminary damage imaging; Then, principal component analysis (PCA) is used to perform feature analysis on the conductivity distribution data for removing redundant background information and achieving data dimensionality reduction; Finally, the simplified image data is inputted into Res2Net for deep feature extraction. Three traditional EIT image reconstruction algorithms (Tikhonov, Conjugate Gradient, L1) and a deep learning algorithm (Invertible Neural Networks, INN) are compared and analyzed with the PCA-Res2Net algorithm. Simulation results demonstrated that the PCA-Res2Net algorithm yield more satisfying reconstructions, and its Correlation Coefficient (CC) and Structure Similarity Index Measure (SSIM) both exceed 97%. Compared with INN, the SSIM and CC of PCA-Res2Net achieved maximum improvements of 8.87% and 19.76% respectively. To further verify the feasibility of the proposed method, a 16-electrode EIT experimental platform is built to detect the damage samples of CFRP laminates. Experimental results demonstrated that the PCA-Res2Net model can effectively reduce the artifacts of the reconstructed images, improve the damage recognition accuracy and edge clarity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小巧富完成签到,获得积分10
3秒前
MMI完成签到 ,获得积分10
5秒前
1234完成签到,获得积分20
5秒前
7秒前
10秒前
zhao完成签到,获得积分10
11秒前
ZengFly完成签到,获得积分10
11秒前
shushuwuwu发布了新的文献求助30
11秒前
惕守应助小化采纳,获得10
11秒前
真实的傲儿完成签到 ,获得积分10
13秒前
Cssss完成签到,获得积分10
13秒前
虞美人发布了新的文献求助10
14秒前
华仔应助追风少年采纳,获得10
14秒前
稳重寒梦完成签到,获得积分10
15秒前
15秒前
liao发布了新的文献求助10
15秒前
16秒前
动听清炎完成签到,获得积分10
18秒前
Danish发布了新的文献求助10
21秒前
ccc发布了新的文献求助10
21秒前
罗媛完成签到,获得积分20
21秒前
222666完成签到,获得积分10
21秒前
善学以致用应助xixi采纳,获得10
22秒前
Jasper应助shushuwuwu采纳,获得10
23秒前
23秒前
25秒前
26秒前
26秒前
26秒前
小蘑菇应助熙慕采纳,获得10
27秒前
D-L@rabbit发布了新的文献求助10
27秒前
英姑应助zhangxu采纳,获得30
28秒前
jeremyher完成签到,获得积分10
29秒前
29秒前
zuodadu发布了新的文献求助10
32秒前
Cssss发布了新的文献求助10
32秒前
32秒前
Orange应助liao采纳,获得10
32秒前
共享精神应助ccc采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527