PCA-Res2Net Model-Based Method for Damage Detection of CFRP Using Electrical Impedance Tomography

电阻抗断层成像 Tikhonov正则化 迭代重建 特征提取 人工智能 主成分分析 模式识别(心理学) 计算机科学 反问题 特征(语言学) 算法 断层摄影术 数学 物理 哲学 数学分析 光学 语言学
作者
Qian Xue,C. L. Philip Chen,Wenru Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:2
标识
DOI:10.1109/tim.2023.3336759
摘要

Electrical Impedance Tomography (EIT) has become a new inspection tool for damage detection in Carbon Fiber Reinforced Polymer (CFRP) composites. However, the inverse problem of EIT is severely non-linear, ill-posed, and underdetermined, limiting the resolution and accuracy of images reconstructed with EIT. To solve the above problems, a PCA-Res2Net algorithm for CFRP damage detection based on Res2Net structure is presented, which consists of three modules: initial imaging, data dimension reduction and deep feature extraction. Firstly, L1 regularization algorithm is used to map the voltage measurement value to the conductivity distribution for preliminary damage imaging; Then, principal component analysis (PCA) is used to perform feature analysis on the conductivity distribution data for removing redundant background information and achieving data dimensionality reduction; Finally, the simplified image data is inputted into Res2Net for deep feature extraction. Three traditional EIT image reconstruction algorithms (Tikhonov, Conjugate Gradient, L1) and a deep learning algorithm (Invertible Neural Networks, INN) are compared and analyzed with the PCA-Res2Net algorithm. Simulation results demonstrated that the PCA-Res2Net algorithm yield more satisfying reconstructions, and its Correlation Coefficient (CC) and Structure Similarity Index Measure (SSIM) both exceed 97%. Compared with INN, the SSIM and CC of PCA-Res2Net achieved maximum improvements of 8.87% and 19.76% respectively. To further verify the feasibility of the proposed method, a 16-electrode EIT experimental platform is built to detect the damage samples of CFRP laminates. Experimental results demonstrated that the PCA-Res2Net model can effectively reduce the artifacts of the reconstructed images, improve the damage recognition accuracy and edge clarity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LingMg完成签到,获得积分10
刚刚
刚刚
1秒前
乐乐应助年轻羿采纳,获得10
1秒前
1秒前
不安尔丝完成签到,获得积分10
2秒前
Lucas应助月兮2013采纳,获得10
2秒前
ww完成签到,获得积分10
2秒前
liudy发布了新的文献求助10
2秒前
科研通AI6.1应助LERROR采纳,获得10
2秒前
3秒前
3秒前
阳光总在风雨后完成签到,获得积分0
3秒前
三笠发布了新的文献求助10
3秒前
boyue发布了新的文献求助10
4秒前
小马发布了新的文献求助10
4秒前
5秒前
5秒前
幽默与研完成签到,获得积分10
5秒前
情怀应助傅31采纳,获得10
6秒前
orixero应助傅31采纳,获得10
6秒前
6秒前
6秒前
科研通AI6.1应助锂离子采纳,获得10
7秒前
7秒前
7秒前
7秒前
ven发布了新的文献求助30
7秒前
深情安青应助科研通管家采纳,获得30
8秒前
8秒前
hetty完成签到,获得积分10
8秒前
zhonglv7应助科研通管家采纳,获得10
8秒前
杨杨应助科研通管家采纳,获得10
8秒前
墨琼琼应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
8秒前
科目三应助lmr采纳,获得10
8秒前
8秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851