Analysis of Macrostep Interaction via Carbon Diffusion Field in SiC Solution Growth

扩散 碳纤维 领域(数学) 材料科学 化学物理 化学 化学工程 纳米技术 分析化学(期刊) 工程物理 热力学 物理 有机化学 数学 工程类 复合材料 复合数 纯数学
作者
Yuki Nakanishi,Kentaro Kutsukake,Yifan Dang,Shunta Harada,Miho Tagawa,Toru Ujihara
出处
期刊:Journal of Crystal Growth [Elsevier]
卷期号:631: 127609-127609
标识
DOI:10.1016/j.jcrysgro.2024.127609
摘要

In the top-seeded solution growth (TSSG) method for SiC, control of macrostep development is crucial for improving the crystal quality. Dislocation conversion phenomena caused by macrosteps with a certain height on the crystal surface can reduce the dislocation density, while over-developed macrosteps bring macroscopic defects such as solvent inclusions. It is experimentally reported that solution flow direction to the step movement has a substantial impact on the macrostep development: parallel solution flow promotes and anti-parallel solution flow suppresses the increase of macrostep height. Our hypothesis is that this macrostep development is governed by the interaction between the macrosteps not by the instability of the density of the atomical steps. In this study, we constructed a computational fluid dynamic model of the boundary layer around macrosteps on the crystal surface, incorporating the solution flow on the boundary layer and consumption of the carbon solute by the macrostep movement quantitatively. The computational simulation reveals that the macrostep with position shift from the center of the adjacent macrosteps moves to the direction of the nearer macrostep under the parallel flow and moves to the farther macrostep under the antiparallel flow. These macrostep movements result in the bunching and debunching of the macrosteps. The mechanisms of macrostep movements demonstrated in this study will be useful for the precise control of macrostep height aiming to the reduction of the dislocation density during SiC solution growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研人发布了新的文献求助10
刚刚
hl完成签到,获得积分10
刚刚
刚刚
刚刚
科研通AI5应助dingdong采纳,获得10
1秒前
Jasper应助幸福胡萝卜采纳,获得10
1秒前
爱看文献的小羽毛完成签到,获得积分10
1秒前
2秒前
song99发布了新的文献求助10
2秒前
2秒前
juan完成签到 ,获得积分10
2秒前
徐安琪完成签到,获得积分10
3秒前
小蘑菇应助深爱不疑采纳,获得200
3秒前
头发乱了完成签到,获得积分10
3秒前
3秒前
格兰兔米兔完成签到,获得积分10
3秒前
3秒前
3秒前
Luna完成签到 ,获得积分10
4秒前
汪鸡毛发布了新的文献求助10
4秒前
积极寻梅发布了新的文献求助10
5秒前
5秒前
tu发布了新的文献求助30
6秒前
在水一方应助云_123采纳,获得10
6秒前
科研小民工应助晚安采纳,获得50
6秒前
木木完成签到,获得积分10
6秒前
7秒前
7秒前
晨安完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
爆米花应助特兰克斯采纳,获得10
9秒前
10秒前
11秒前
11秒前
12秒前
葛辉辉发布了新的文献求助10
12秒前
12秒前
共享精神应助baobaonaixi采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762