CrossFormer: Cross-guided attention for multi-modal object detection

情态动词 计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 模式识别(心理学) 化学 高分子化学
作者
Seungik Lee,Jaehyeong Park,Jinsun Park
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:179: 144-150 被引量:3
标识
DOI:10.1016/j.patrec.2024.02.012
摘要

Object detection is one of the essential tasks in a variety of real-world applications such as autonomous driving and robotics. In a real-world scenario, unfortunately, there are numerous challenges such as illumination changes, adverse weather conditions, and geographical changes, to name a few. To tackle the problem, we propose a novel multi-modal object detection model that is built upon a hierarchical transformer and cross-guidance between different modalities. The proposed hierarchical transformer consists of domain-specific feature extraction networks where intermediate features are connected by the proposed Cross-Guided Attention Module (CGAM) to enrich their representational power. Specifically, in the CGAM, one domain is regarded as a guide and the other is assigned to a base. After that, the cross-modal attention from the guide to the base is applied to the base feature. The CGAM works bidirectionally in parallel by exchanging roles between modalities to refine multi-modal features simultaneously. Experimental results on FLIR-aligned, LLVIP, and KAIST multispectral pedestrian datasets demonstrate that the proposed method is superior to previous multi-modal detection algorithms quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
1223发布了新的文献求助10
3秒前
khurram发布了新的文献求助10
4秒前
5秒前
乐乐乐乐乐乐应助ark861023采纳,获得10
5秒前
小熊猫发布了新的文献求助10
5秒前
6秒前
6秒前
mhl11应助will采纳,获得10
10秒前
lvrunyu发布了新的文献求助30
11秒前
Akim应助123采纳,获得10
12秒前
12秒前
13秒前
Xue发布了新的文献求助10
14秒前
momo完成签到 ,获得积分10
15秒前
15秒前
669936lyh发布了新的文献求助10
16秒前
17秒前
谦让菠萝发布了新的文献求助10
17秒前
17秒前
强总完成签到,获得积分20
17秒前
Hello应助cjch采纳,获得10
19秒前
19秒前
19秒前
Zzz发布了新的文献求助10
20秒前
21秒前
小蘑菇应助义气珩采纳,获得10
22秒前
达蒙璃完成签到 ,获得积分0
22秒前
高兴的寄真完成签到,获得积分10
23秒前
Starwalker应助炸娃502269576采纳,获得10
24秒前
123发布了新的文献求助10
24秒前
滴滴哒发布了新的文献求助10
25秒前
Kiki发布了新的文献求助10
26秒前
小旺发布了新的文献求助10
26秒前
27秒前
医馆亲授发布了新的文献求助10
28秒前
ADDDD发布了新的文献求助10
30秒前
Owen应助Hour采纳,获得10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313480
求助须知:如何正确求助?哪些是违规求助? 2945844
关于积分的说明 8527242
捐赠科研通 2621522
什么是DOI,文献DOI怎么找? 1433713
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650600