CrossFormer: Cross-guided attention for multi-modal object detection

情态动词 计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 模式识别(心理学) 化学 高分子化学
作者
Seungik Lee,Jaehyeong Park,Jinsun Park
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:179: 144-150 被引量:11
标识
DOI:10.1016/j.patrec.2024.02.012
摘要

Object detection is one of the essential tasks in a variety of real-world applications such as autonomous driving and robotics. In a real-world scenario, unfortunately, there are numerous challenges such as illumination changes, adverse weather conditions, and geographical changes, to name a few. To tackle the problem, we propose a novel multi-modal object detection model that is built upon a hierarchical transformer and cross-guidance between different modalities. The proposed hierarchical transformer consists of domain-specific feature extraction networks where intermediate features are connected by the proposed Cross-Guided Attention Module (CGAM) to enrich their representational power. Specifically, in the CGAM, one domain is regarded as a guide and the other is assigned to a base. After that, the cross-modal attention from the guide to the base is applied to the base feature. The CGAM works bidirectionally in parallel by exchanging roles between modalities to refine multi-modal features simultaneously. Experimental results on FLIR-aligned, LLVIP, and KAIST multispectral pedestrian datasets demonstrate that the proposed method is superior to previous multi-modal detection algorithms quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助赵三岁采纳,获得10
11秒前
yyy2025完成签到,获得积分10
15秒前
木雨亦潇潇完成签到,获得积分10
22秒前
香蕉觅云应助nine2652采纳,获得10
24秒前
量子星尘发布了新的文献求助10
28秒前
芳华如梦完成签到 ,获得积分10
30秒前
30秒前
31秒前
31秒前
土豆丝完成签到 ,获得积分10
31秒前
琦琦完成签到,获得积分10
40秒前
zzzz完成签到,获得积分20
45秒前
GEZIKU完成签到 ,获得积分10
46秒前
53秒前
1分钟前
赵三岁发布了新的文献求助10
1分钟前
wwb完成签到,获得积分10
1分钟前
1分钟前
1分钟前
肯德基没有黄焖鸡完成签到 ,获得积分10
1分钟前
能干冰露完成签到,获得积分10
1分钟前
牛奶拌可乐完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
周小鱼完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
老张完成签到,获得积分10
1分钟前
1分钟前
zhugao完成签到,获得积分10
1分钟前
1分钟前
南风知我意完成签到,获得积分10
1分钟前
朴实寻琴完成签到 ,获得积分10
1分钟前
可可可爱完成签到 ,获得积分10
1分钟前
lsy完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
hwen1998完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022