Prognostic impact and immunotherapeutic implications of NETosis‐related gene signature in gastric cancer patients

肿瘤科 内科学 医学 癌症 比例危险模型 免疫疗法 基因 生物 遗传学
作者
Tian Xia,Zhenhua Wei,Hongzhi Wang,Gao-Min Liu
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
标识
DOI:10.1111/jcmm.18087
摘要

Abstract The role of NETosis and its related molecules remains unclear in gastric cancer. The data used in this study was directly downloaded from the Cancer Genome Atlas (TCGA) database. All analysis and plots are completed in R software using diverse R packages. In our study, we collected the list of NETosis‐related genes from previous publications. Based on the list and expression profile of gastric cancer patients from the TCGA database, we identified the NETosis‐related genes significantly correlated with patients survival. Then, CLEC6A, BST1 and TLR7 were identified through LASSO regression and multivariate Cox regression analysis for prognosis model construction. This prognosis model showed great predictive efficiency in both training and validation cohorts. We noticed that the high‐risk patients might have a worse survival performance. Next, we explored the biological enrichment difference between high‐ and low‐risk patients and found that many carcinogenic pathways were upregulated in the high‐risk patients. Meanwhile, we investigated the genomic instability, mutation burden and immune microenvironment difference between high‐ and low‐risk patients. Moreover, we noticed that low‐risk patients were more sensitive to immunotherapy (85.95% vs. 56.22%). High‐risk patients were more sensitive to some small molecules compounds like camptothecin_1003, cisplatin_1005, cytarabine_1006, nutlin‐3a (−)_1047, gemcitabine_1190, WZ4003_1614, selumetinib_1736 and mitoxantrone_1810. In summary, our study comprehensively explored the role of NETosis‐related genes in gastric cancer, which can provide direction for relevant studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿洲完成签到,获得积分10
刚刚
刚刚
yf_zhu发布了新的文献求助10
刚刚
正直亦旋发布了新的文献求助10
刚刚
1秒前
华仔应助招财不肥采纳,获得10
1秒前
健康的梦曼完成签到 ,获得积分10
1秒前
最最最发布了新的文献求助10
1秒前
科研是什么鬼完成签到,获得积分10
3秒前
3秒前
4秒前
欢喜素阴完成签到 ,获得积分10
5秒前
yirenli完成签到,获得积分10
5秒前
希望天下0贩的0应助DAYTOY采纳,获得10
5秒前
狮子座完成签到,获得积分10
5秒前
爆米花应助润润轩轩采纳,获得10
5秒前
7秒前
熊boy完成签到,获得积分10
7秒前
1233完成签到,获得积分10
7秒前
Chang发布了新的文献求助10
7秒前
111222发布了新的文献求助50
7秒前
wxd发布了新的文献求助10
8秒前
上官若男应助浅笑采纳,获得10
9秒前
英姑应助Lxxixixi采纳,获得10
9秒前
斯文败类应助lichaoyes采纳,获得10
9秒前
aaaaa完成签到,获得积分10
9秒前
唉呦嘿发布了新的文献求助10
10秒前
共享精神应助迅速宛筠采纳,获得10
10秒前
上上谦应助酷炫过客采纳,获得10
10秒前
脑洞疼应助酷炫过客采纳,获得10
11秒前
千幻发布了新的文献求助10
11秒前
11秒前
12秒前
英俊的铭应助俎树同采纳,获得10
13秒前
13秒前
liyiren完成签到,获得积分10
14秒前
14秒前
k7完成签到,获得积分10
14秒前
bc发布了新的文献求助10
14秒前
cui123完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762