亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data

磁共振成像 医学 骨质疏松症 人口 股骨头 生命银行 内科学 放射科 生物信息学 解剖 生物 环境卫生
作者
David Morris,Chengjia Wang,Giorgos Papanastasiou,Calum Gray,Wei Xu,Staffan Sjöström,Sammy Badr,Julien Paccou,Scott Semple,Tom MacGillivray,William P. Cawthorn
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:24: 89-104
标识
DOI:10.1016/j.csbj.2023.12.029
摘要

BACKGROUNDBone marrow adipose tissue (BMAT) represents >10% fat mass in healthy humans and can be measured by magnetic resonance imaging (MRI) as the bone marrow fat fraction (BMFF). Human MRI studies have identified several diseases associated with BMFF but have been relatively small scale. Population-scale studies therefore have huge potential to reveal BMAT’s true clinical relevance. The UK Biobank (UKBB) is undertaking MRI of 100,000 participants, providing the ideal opportunity for such advances.OBJECTIVETo establish deep learning for high-throughput multi-site BMFF analysis from UKBB MRI data.MATERIALS AND METHODSWe studied males and females aged 60-69. BM segmentation was automated using a new lightweight attention-based 3D U-Net convolutional neural network that improved segmentation of small structures from large volumetric data. Using manual segmentations from 61-64 subjects, the models were trained to segment four BM regions of interest: the spine (thoracic and lumbar vertebrae), femoral head, total hip and femoral diaphysis. Models were tested using a further 10-12 datasets per region and validated using datasets from 729 UKBB participants. BMFF was then quantified and pathophysiological characteristics assessed, including site- and sex-dependent differences and the relationships with age, BMI, bone mineral density, peripheral adiposity, and osteoporosis.RESULTSModel accuracy matched or exceeded that for conventional U-Nets, yielding Dice scores of 91.2% (spine), 94.5% (femoral head), 91.2% (total hip) and 86.6% (femoral diaphysis). One case of severe scoliosis prevented segmentation of the spine, while one case of Non-Hodgkin Lymphoma prevented segmentation of the spine, femoral head and total hip because of T2 signal depletion; however, successful segmentation was not disrupted by any other pathophysiological variables. The resulting BMFF measurements confirmed expected relationships between BMFF and age, sex and bone density, and identified new site- and sex-specific characteristics.CONCLUSIONSWe have established a new deep learning method for accurate segmentation of small structures from large volumetric data, allowing high-throughput multi-site BMFF measurement in the UKBB. Our findings reveal new pathophysiological insights, highlighting the potential of BMFF as a novel clinical biomarker. Applying our method across the full UKBB cohort will help to reveal the impact of BMAT on human health and disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qingfeng完成签到,获得积分10
刚刚
FashionBoy应助犬来八荒采纳,获得20
刚刚
lx完成签到,获得积分10
2秒前
bkagyin应助张璟博采纳,获得10
10秒前
踏实白柏完成签到 ,获得积分10
31秒前
32秒前
明亮的老四完成签到 ,获得积分10
47秒前
47秒前
好人发布了新的文献求助30
54秒前
好人完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助Epiphany采纳,获得10
1分钟前
1分钟前
张璟博发布了新的文献求助10
1分钟前
犬来八荒发布了新的文献求助20
1分钟前
可爱的函函应助张璟博采纳,获得10
1分钟前
1分钟前
Epiphany发布了新的文献求助10
1分钟前
1分钟前
TXZ06发布了新的文献求助30
1分钟前
1分钟前
冷酷愚志完成签到,获得积分10
1分钟前
1分钟前
饼子完成签到 ,获得积分10
2分钟前
2分钟前
Epiphany完成签到,获得积分10
2分钟前
3分钟前
TXZ06发布了新的文献求助30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
kuoping完成签到,获得积分0
3分钟前
4分钟前
4分钟前
TXZ06发布了新的文献求助30
4分钟前
4分钟前
4分钟前
4分钟前
Yuuuan完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634920
求助须知:如何正确求助?哪些是违规求助? 4734247
关于积分的说明 14989490
捐赠科研通 4792667
什么是DOI,文献DOI怎么找? 2559733
邀请新用户注册赠送积分活动 1520066
关于科研通互助平台的介绍 1480128