已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data

磁共振成像 医学 骨质疏松症 人口 股骨头 生命银行 内科学 放射科 生物信息学 解剖 生物 环境卫生
作者
David Morris,Chengjia Wang,Giorgos Papanastasiou,Calum Gray,Wei Xu,Staffan Sjöström,Sammy Badr,Julien Paccou,Scott Semple,Tom MacGillivray,William P. Cawthorn
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:24: 89-104
标识
DOI:10.1016/j.csbj.2023.12.029
摘要

BACKGROUNDBone marrow adipose tissue (BMAT) represents >10% fat mass in healthy humans and can be measured by magnetic resonance imaging (MRI) as the bone marrow fat fraction (BMFF). Human MRI studies have identified several diseases associated with BMFF but have been relatively small scale. Population-scale studies therefore have huge potential to reveal BMAT’s true clinical relevance. The UK Biobank (UKBB) is undertaking MRI of 100,000 participants, providing the ideal opportunity for such advances.OBJECTIVETo establish deep learning for high-throughput multi-site BMFF analysis from UKBB MRI data.MATERIALS AND METHODSWe studied males and females aged 60-69. BM segmentation was automated using a new lightweight attention-based 3D U-Net convolutional neural network that improved segmentation of small structures from large volumetric data. Using manual segmentations from 61-64 subjects, the models were trained to segment four BM regions of interest: the spine (thoracic and lumbar vertebrae), femoral head, total hip and femoral diaphysis. Models were tested using a further 10-12 datasets per region and validated using datasets from 729 UKBB participants. BMFF was then quantified and pathophysiological characteristics assessed, including site- and sex-dependent differences and the relationships with age, BMI, bone mineral density, peripheral adiposity, and osteoporosis.RESULTSModel accuracy matched or exceeded that for conventional U-Nets, yielding Dice scores of 91.2% (spine), 94.5% (femoral head), 91.2% (total hip) and 86.6% (femoral diaphysis). One case of severe scoliosis prevented segmentation of the spine, while one case of Non-Hodgkin Lymphoma prevented segmentation of the spine, femoral head and total hip because of T2 signal depletion; however, successful segmentation was not disrupted by any other pathophysiological variables. The resulting BMFF measurements confirmed expected relationships between BMFF and age, sex and bone density, and identified new site- and sex-specific characteristics.CONCLUSIONSWe have established a new deep learning method for accurate segmentation of small structures from large volumetric data, allowing high-throughput multi-site BMFF measurement in the UKBB. Our findings reveal new pathophysiological insights, highlighting the potential of BMFF as a novel clinical biomarker. Applying our method across the full UKBB cohort will help to reveal the impact of BMAT on human health and disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助科研通管家采纳,获得30
2秒前
慕青应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得30
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得30
2秒前
xxfsx应助科研通管家采纳,获得10
2秒前
Thien应助科研通管家采纳,获得20
2秒前
英俊的铭应助冰雪人采纳,获得30
2秒前
2秒前
2秒前
3秒前
隐形曼青应助爱吃榴莲采纳,获得10
3秒前
3秒前
DA完成签到,获得积分10
4秒前
hhhhhhh完成签到,获得积分20
5秒前
7秒前
huangshoukun发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
13秒前
俊逸的念寒完成签到,获得积分10
13秒前
原子格致完成签到,获得积分10
15秒前
16秒前
斯文败类应助Cindy采纳,获得10
19秒前
kali完成签到 ,获得积分10
21秒前
Pan发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
22秒前
CipherSage应助Jnscal采纳,获得10
25秒前
我是老大应助苻谷丝采纳,获得10
25秒前
26秒前
28秒前
隐形曼青应助工诩采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407380
求助须知:如何正确求助?哪些是违规求助? 4524989
关于积分的说明 14100518
捐赠科研通 4438717
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428447
关于科研通互助平台的介绍 1406479