A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data

磁共振成像 医学 骨质疏松症 人口 股骨头 生命银行 内科学 放射科 生物信息学 解剖 生物 环境卫生
作者
David Morris,Chengjia Wang,Giorgos Papanastasiou,Calum Gray,Wei Xu,Staffan Sjöström,Sammy Badr,Julien Paccou,Scott Semple,Tom MacGillivray,William P. Cawthorn
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:24: 89-104
标识
DOI:10.1016/j.csbj.2023.12.029
摘要

BACKGROUNDBone marrow adipose tissue (BMAT) represents >10% fat mass in healthy humans and can be measured by magnetic resonance imaging (MRI) as the bone marrow fat fraction (BMFF). Human MRI studies have identified several diseases associated with BMFF but have been relatively small scale. Population-scale studies therefore have huge potential to reveal BMAT’s true clinical relevance. The UK Biobank (UKBB) is undertaking MRI of 100,000 participants, providing the ideal opportunity for such advances.OBJECTIVETo establish deep learning for high-throughput multi-site BMFF analysis from UKBB MRI data.MATERIALS AND METHODSWe studied males and females aged 60-69. BM segmentation was automated using a new lightweight attention-based 3D U-Net convolutional neural network that improved segmentation of small structures from large volumetric data. Using manual segmentations from 61-64 subjects, the models were trained to segment four BM regions of interest: the spine (thoracic and lumbar vertebrae), femoral head, total hip and femoral diaphysis. Models were tested using a further 10-12 datasets per region and validated using datasets from 729 UKBB participants. BMFF was then quantified and pathophysiological characteristics assessed, including site- and sex-dependent differences and the relationships with age, BMI, bone mineral density, peripheral adiposity, and osteoporosis.RESULTSModel accuracy matched or exceeded that for conventional U-Nets, yielding Dice scores of 91.2% (spine), 94.5% (femoral head), 91.2% (total hip) and 86.6% (femoral diaphysis). One case of severe scoliosis prevented segmentation of the spine, while one case of Non-Hodgkin Lymphoma prevented segmentation of the spine, femoral head and total hip because of T2 signal depletion; however, successful segmentation was not disrupted by any other pathophysiological variables. The resulting BMFF measurements confirmed expected relationships between BMFF and age, sex and bone density, and identified new site- and sex-specific characteristics.CONCLUSIONSWe have established a new deep learning method for accurate segmentation of small structures from large volumetric data, allowing high-throughput multi-site BMFF measurement in the UKBB. Our findings reveal new pathophysiological insights, highlighting the potential of BMFF as a novel clinical biomarker. Applying our method across the full UKBB cohort will help to reveal the impact of BMAT on human health and disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琪凯定理完成签到,获得积分10
1秒前
燊yy发布了新的文献求助10
1秒前
任性起眸发布了新的文献求助10
2秒前
科研通AI2S应助清爽的太君采纳,获得10
3秒前
巴啦啦发布了新的文献求助10
5秒前
自由的机器猫完成签到,获得积分10
6秒前
等凌晨日出完成签到,获得积分10
6秒前
JamesPei应助小吕采纳,获得10
7秒前
CodeCraft应助燊yy采纳,获得10
7秒前
领导范儿应助柔弱的秋珊采纳,获得10
8秒前
peterlee完成签到,获得积分10
9秒前
10秒前
11秒前
谭鸿强发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
Druid发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
科研通AI2S应助开放的采文采纳,获得10
16秒前
16秒前
公冶立辉发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
公冶立辉发布了新的文献求助10
17秒前
领导范儿应助xiaoxiao采纳,获得10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149396
求助须知:如何正确求助?哪些是违规求助? 2800463
关于积分的说明 7840190
捐赠科研通 2458038
什么是DOI,文献DOI怎么找? 1308223
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706