清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning nomogram based on Gd-EOB-DTPA MRI for predicting early recurrence in hepatocellular carcinoma after hepatectomy

列线图 医学 肝细胞癌 放射科 逻辑回归 神经组阅片室 肝切除术 单变量 核医学 内科学 多元统计 切除术 外科 机器学习 计算机科学 神经学 精神科
作者
Yan Meng,Xiao Zhang,Bin Zhang,Zhijun Geng,Chuanmiao Xie,Wei Yang,Shuixing Zhang,Zhendong Qi,Ting Lin,Qiying Ke,Xinming Li,Shutong Wang,Xianyue Quan
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (7): 4949-4961 被引量:19
标识
DOI:10.1007/s00330-023-09419-0
摘要

The accurate prediction of post-hepatectomy early recurrence in patients with hepatocellular carcinoma (HCC) is crucial for decision-making regarding postoperative adjuvant treatment and monitoring. We aimed to explore the feasibility of deep learning (DL) features derived from gadoxetate disodium (Gd-EOB-DTPA) MRI, qualitative features, and clinical variables for predicting early recurrence.In this bicentric study, 285 patients with HCC who underwent Gd-EOB-DTPA MRI before resection were divided into training (n = 195) and validation (n = 90) sets. DL features were extracted from contrast-enhanced MRI images using VGGNet-19. Three feature selection methods and five classification methods were combined for DL signature construction. Subsequently, an mp-MR DL signature fused with multiphase DL signatures of contrast-enhanced images was constructed. Univariate and multivariate logistic regression analyses were used to identify early recurrence risk factors including mp-MR DL signature, microvascular invasion (MVI), and tumor number. A DL nomogram was built by incorporating deep features and significant clinical variables to achieve early recurrence prediction.MVI (p = 0.039), tumor number (p = 0.001), and mp-MR DL signature (p < 0.001) were independent risk factors for early recurrence. The DL nomogram outperformed the clinical nomogram in the training set (AUC: 0.949 vs. 0.751; p < 0.001) and validation set (AUC: 0.909 vs. 0.715; p = 0.002). Excellent DL nomogram calibration was achieved in both training and validation sets. Decision curve analysis confirmed the clinical usefulness of DL nomogram.The proposed DL nomogram was superior to the clinical nomogram in predicting early recurrence for HCC patients after hepatectomy.• Deep learning signature based on Gd-EOB-DTPA MRI was the predominant independent predictor of early recurrence for hepatocellular carcinoma (HCC) after hepatectomy. • Deep learning nomogram based on clinical factors and Gd-EOB-DTPA MRI features is promising for predicting early recurrence of HCC. • Deep learning nomogram outperformed the conventional clinical nomogram in predicting early recurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
量子星尘发布了新的文献求助10
35秒前
小梦完成签到,获得积分10
39秒前
47秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
宇文非笑完成签到 ,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
飞翔的企鹅完成签到,获得积分10
2分钟前
TianYou给TianYou的求助进行了留言
3分钟前
量子星尘发布了新的文献求助10
3分钟前
宁静完成签到 ,获得积分10
3分钟前
临风怳兮浩歌应助kk采纳,获得10
3分钟前
4分钟前
kk完成签到,获得积分10
4分钟前
juan完成签到 ,获得积分10
4分钟前
TianYou发布了新的文献求助10
4分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
明眸完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
strzeng发布了新的文献求助10
5分钟前
hairgod发布了新的文献求助10
5分钟前
hairgod完成签到,获得积分10
5分钟前
6分钟前
小谢完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
SciGPT应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
8分钟前
may发布了新的文献求助30
8分钟前
8分钟前
矢思然发布了新的文献求助10
8分钟前
lod完成签到,获得积分10
8分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128726
捐赠科研通 3238333
什么是DOI,文献DOI怎么找? 1789703
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069