Deep learning nomogram based on Gd-EOB-DTPA MRI for predicting early recurrence in hepatocellular carcinoma after hepatectomy

列线图 医学 肝细胞癌 放射科 逻辑回归 神经组阅片室 肝切除术 单变量 核医学 内科学 多元统计 切除术 外科 机器学习 计算机科学 神经学 精神科
作者
Yan Meng,Xiao Zhang,Bin Zhang,Zhijun Geng,Chuanmiao Xie,Wei Yang,Shuixing Zhang,Zhendong Qi,Ting Lin,Qiying Ke,Xinming Li,Shutong Wang,Xianyue Quan
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (7): 4949-4961 被引量:19
标识
DOI:10.1007/s00330-023-09419-0
摘要

The accurate prediction of post-hepatectomy early recurrence in patients with hepatocellular carcinoma (HCC) is crucial for decision-making regarding postoperative adjuvant treatment and monitoring. We aimed to explore the feasibility of deep learning (DL) features derived from gadoxetate disodium (Gd-EOB-DTPA) MRI, qualitative features, and clinical variables for predicting early recurrence.In this bicentric study, 285 patients with HCC who underwent Gd-EOB-DTPA MRI before resection were divided into training (n = 195) and validation (n = 90) sets. DL features were extracted from contrast-enhanced MRI images using VGGNet-19. Three feature selection methods and five classification methods were combined for DL signature construction. Subsequently, an mp-MR DL signature fused with multiphase DL signatures of contrast-enhanced images was constructed. Univariate and multivariate logistic regression analyses were used to identify early recurrence risk factors including mp-MR DL signature, microvascular invasion (MVI), and tumor number. A DL nomogram was built by incorporating deep features and significant clinical variables to achieve early recurrence prediction.MVI (p = 0.039), tumor number (p = 0.001), and mp-MR DL signature (p < 0.001) were independent risk factors for early recurrence. The DL nomogram outperformed the clinical nomogram in the training set (AUC: 0.949 vs. 0.751; p < 0.001) and validation set (AUC: 0.909 vs. 0.715; p = 0.002). Excellent DL nomogram calibration was achieved in both training and validation sets. Decision curve analysis confirmed the clinical usefulness of DL nomogram.The proposed DL nomogram was superior to the clinical nomogram in predicting early recurrence for HCC patients after hepatectomy.• Deep learning signature based on Gd-EOB-DTPA MRI was the predominant independent predictor of early recurrence for hepatocellular carcinoma (HCC) after hepatectomy. • Deep learning nomogram based on clinical factors and Gd-EOB-DTPA MRI features is promising for predicting early recurrence of HCC. • Deep learning nomogram outperformed the conventional clinical nomogram in predicting early recurrence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助小鱼采纳,获得10
1秒前
李爱国应助蓝色教室采纳,获得10
4秒前
5秒前
6秒前
7秒前
星辰大海应助小白采纳,获得10
8秒前
8秒前
赘婿应助顺心的毛巾采纳,获得10
9秒前
11秒前
乐观大雁发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
hejiale完成签到,获得积分20
12秒前
飘逸的小丸子完成签到,获得积分20
13秒前
醉熏的伊发布了新的文献求助20
13秒前
14秒前
lyj发布了新的文献求助10
15秒前
16秒前
17秒前
prosperp应助mcnt采纳,获得30
17秒前
17秒前
17秒前
17秒前
17秒前
18秒前
Lucas应助wulala采纳,获得10
18秒前
Elijah完成签到 ,获得积分10
19秒前
tompo发布了新的文献求助30
19秒前
丘比特应助Rafayel采纳,获得10
19秒前
丘比特应助飘逸的小丸子采纳,获得10
20秒前
哎哟很烦发布了新的文献求助10
20秒前
小鱼完成签到,获得积分10
20秒前
科研通AI5应助pka采纳,获得10
21秒前
天明发布了新的文献求助30
22秒前
蓝色教室发布了新的文献求助10
22秒前
22秒前
22秒前
lyj完成签到,获得积分10
23秒前
四福祥完成签到,获得积分10
24秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483245
求助须知:如何正确求助?哪些是违规求助? 3072633
关于积分的说明 9127379
捐赠科研通 2764270
什么是DOI,文献DOI怎么找? 1517034
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700770