亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Airborne multispectral imagery and deep learning for biosecurity surveillance of invasive forest pests in urban landscapes

多光谱图像 生物安全 城市林业 地理 遥感 地图学 林业 生态学 生物
作者
Angus J. Carnegie,H. Eslick,P.A. Barber,Matthew Nagel,Christine Stone
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:81: 127859-127859 被引量:2
标识
DOI:10.1016/j.ufug.2023.127859
摘要

Urban and peri-urban trees in major cities provide a gateway for exotic pests and diseases (hereafter “pests”) to establish and spread into new countries. Consequently, they can be used as sentinels for early detection of exotic pests that could threaten commercial, environmental and amenity forests. Biosecurity surveillance for exotic forest pests relies on monitoring of host trees — or sentinel trees — around high-risk sites, such as airports and seaports. There are few publicly available spatial databases of urban street and park trees, so locating and mapping host trees is conducted via ground surveys. This is time-consuming and resource-intensive, and generally does not provide complete coverage. Advances in remote sensing technologies and machine learning provide an opportunity for semi-automation of tree species mapping to assist in biosecurity surveillance. In this study, we obtained high resolution (≥12 cm), 10-band, multispectral imagery using the ArborCam™ system mounted to a fixed-wing aircraft over Sydney, Australia. We mapped 630 Pinus trees and 439 Platanus trees on-foot, validating their exact location on the airborne imagery using an in-field mapping app. Using a machine learning, convolutional neural network workflow, we were able to classify the two target genera with a high level of accuracy in a complex urban landscape. Overall accuracy was 92.1% for Pinus and 95.2% for Platanus, precision (user’s accuracy) ranged from 61.3% to 77.6%, sensitivity (producer’s accuracy) ranged from 92.7% to 95.2%, and F1-score ranged from 74.6% to 84.4%. Our study validates the potential for using multispectral imagery and machine learning to increase efficiencies in tree biosecurity surveillance. We encourage biosecurity agencies to consider greater use of this technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
没见云发布了新的文献求助10
7秒前
8秒前
12秒前
15秒前
秦时明月发布了新的文献求助10
18秒前
20秒前
24秒前
请输入昵称完成签到 ,获得积分10
26秒前
Jeongin发布了新的文献求助10
29秒前
30秒前
Freedom完成签到 ,获得积分10
35秒前
xiaobizaizhi233完成签到,获得积分10
38秒前
可乐完成签到 ,获得积分10
40秒前
40秒前
Jeongin完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
48秒前
科目三应助OYJH采纳,获得10
58秒前
科研兵完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
科研通AI6.1应助Okanryo采纳,获得10
1分钟前
sulin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
如意秋珊完成签到 ,获得积分10
1分钟前
秦时明月发布了新的文献求助10
1分钟前
丁一发布了新的文献求助10
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
Gryphon完成签到,获得积分10
2分钟前
钮钴禄鬼鬼完成签到 ,获得积分10
2分钟前
Akim应助孙泉采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755160
求助须知:如何正确求助?哪些是违规求助? 5491833
关于积分的说明 15380956
捐赠科研通 4893420
什么是DOI,文献DOI怎么找? 2632044
邀请新用户注册赠送积分活动 1579872
关于科研通互助平台的介绍 1535729