已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Airborne multispectral imagery and deep learning for biosecurity surveillance of invasive forest pests in urban landscapes

多光谱图像 生物安全 城市林业 地理 遥感 地图学 林业 生态学 生物
作者
Angus J. Carnegie,H. Eslick,P.A. Barber,Matthew Nagel,Christine Stone
出处
期刊:Urban Forestry & Urban Greening [Elsevier BV]
卷期号:81: 127859-127859 被引量:2
标识
DOI:10.1016/j.ufug.2023.127859
摘要

Urban and peri-urban trees in major cities provide a gateway for exotic pests and diseases (hereafter “pests”) to establish and spread into new countries. Consequently, they can be used as sentinels for early detection of exotic pests that could threaten commercial, environmental and amenity forests. Biosecurity surveillance for exotic forest pests relies on monitoring of host trees — or sentinel trees — around high-risk sites, such as airports and seaports. There are few publicly available spatial databases of urban street and park trees, so locating and mapping host trees is conducted via ground surveys. This is time-consuming and resource-intensive, and generally does not provide complete coverage. Advances in remote sensing technologies and machine learning provide an opportunity for semi-automation of tree species mapping to assist in biosecurity surveillance. In this study, we obtained high resolution (≥12 cm), 10-band, multispectral imagery using the ArborCam™ system mounted to a fixed-wing aircraft over Sydney, Australia. We mapped 630 Pinus trees and 439 Platanus trees on-foot, validating their exact location on the airborne imagery using an in-field mapping app. Using a machine learning, convolutional neural network workflow, we were able to classify the two target genera with a high level of accuracy in a complex urban landscape. Overall accuracy was 92.1% for Pinus and 95.2% for Platanus, precision (user’s accuracy) ranged from 61.3% to 77.6%, sensitivity (producer’s accuracy) ranged from 92.7% to 95.2%, and F1-score ranged from 74.6% to 84.4%. Our study validates the potential for using multispectral imagery and machine learning to increase efficiencies in tree biosecurity surveillance. We encourage biosecurity agencies to consider greater use of this technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ok完成签到,获得积分10
2秒前
MrTStar完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
cherrychou完成签到,获得积分10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
浮浮世世应助科研通管家采纳,获得30
6秒前
打打应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
浮浮世世应助科研通管家采纳,获得30
7秒前
7秒前
Ava应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
风中问晴发布了新的文献求助10
8秒前
迅速泽洋发布了新的文献求助10
8秒前
9秒前
CXS发布了新的文献求助10
9秒前
11秒前
秀丽的短靴完成签到,获得积分10
11秒前
所所应助吉良吉影采纳,获得10
13秒前
samantha817完成签到,获得积分10
13秒前
JamesPei应助长情火龙果采纳,获得10
14秒前
15秒前
16秒前
唠叨的无敌完成签到 ,获得积分20
16秒前
氢氧化钠Li完成签到,获得积分10
17秒前
朱庆柯发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422