已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Airborne multispectral imagery and deep learning for biosecurity surveillance of invasive forest pests in urban landscapes

多光谱图像 生物安全 城市林业 地理 遥感 地图学 林业 生态学 生物
作者
Angus J. Carnegie,H. Eslick,P.A. Barber,Matthew Nagel,Christine Stone
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:81: 127859-127859 被引量:2
标识
DOI:10.1016/j.ufug.2023.127859
摘要

Urban and peri-urban trees in major cities provide a gateway for exotic pests and diseases (hereafter “pests”) to establish and spread into new countries. Consequently, they can be used as sentinels for early detection of exotic pests that could threaten commercial, environmental and amenity forests. Biosecurity surveillance for exotic forest pests relies on monitoring of host trees — or sentinel trees — around high-risk sites, such as airports and seaports. There are few publicly available spatial databases of urban street and park trees, so locating and mapping host trees is conducted via ground surveys. This is time-consuming and resource-intensive, and generally does not provide complete coverage. Advances in remote sensing technologies and machine learning provide an opportunity for semi-automation of tree species mapping to assist in biosecurity surveillance. In this study, we obtained high resolution (≥12 cm), 10-band, multispectral imagery using the ArborCam™ system mounted to a fixed-wing aircraft over Sydney, Australia. We mapped 630 Pinus trees and 439 Platanus trees on-foot, validating their exact location on the airborne imagery using an in-field mapping app. Using a machine learning, convolutional neural network workflow, we were able to classify the two target genera with a high level of accuracy in a complex urban landscape. Overall accuracy was 92.1% for Pinus and 95.2% for Platanus, precision (user’s accuracy) ranged from 61.3% to 77.6%, sensitivity (producer’s accuracy) ranged from 92.7% to 95.2%, and F1-score ranged from 74.6% to 84.4%. Our study validates the potential for using multispectral imagery and machine learning to increase efficiencies in tree biosecurity surveillance. We encourage biosecurity agencies to consider greater use of this technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小V发布了新的文献求助10
刚刚
天天快乐应助科研打工人采纳,获得10
刚刚
2秒前
杳鸢应助清枫采纳,获得10
3秒前
4秒前
5秒前
小丁发布了新的文献求助10
5秒前
Ava应助two采纳,获得20
9秒前
yzw发布了新的文献求助10
9秒前
Candy2024完成签到 ,获得积分10
9秒前
Analchem发布了新的文献求助10
9秒前
科研通AI5应助果ghj采纳,获得10
10秒前
12秒前
13秒前
Doctor_jie完成签到 ,获得积分10
14秒前
15秒前
芝心鱼丸完成签到,获得积分10
15秒前
16秒前
葱花和香菜完成签到,获得积分10
17秒前
风中子轩发布了新的文献求助18
17秒前
18秒前
小灰灰完成签到 ,获得积分10
19秒前
QQQQ发布了新的文献求助10
20秒前
21秒前
22秒前
Neverlocked发布了新的文献求助10
22秒前
24秒前
酷酷薯片发布了新的文献求助30
24秒前
25秒前
SYLH应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得80
26秒前
26秒前
今后应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
曹great发布了新的文献求助10
27秒前
ding应助陶醉觅夏采纳,获得10
29秒前
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477244
求助须知:如何正确求助?哪些是违规求助? 3068723
关于积分的说明 9109314
捐赠科研通 2760211
什么是DOI,文献DOI怎么找? 1514712
邀请新用户注册赠送积分活动 700431
科研通“疑难数据库(出版商)”最低求助积分说明 699509