Airborne multispectral imagery and deep learning for biosecurity surveillance of invasive forest pests in urban landscapes

多光谱图像 生物安全 城市林业 地理 遥感 地图学 林业 生态学 生物
作者
Angus J. Carnegie,H. Eslick,P.A. Barber,Matthew Nagel,Christine Stone
出处
期刊:Urban Forestry & Urban Greening [Elsevier BV]
卷期号:81: 127859-127859 被引量:2
标识
DOI:10.1016/j.ufug.2023.127859
摘要

Urban and peri-urban trees in major cities provide a gateway for exotic pests and diseases (hereafter “pests”) to establish and spread into new countries. Consequently, they can be used as sentinels for early detection of exotic pests that could threaten commercial, environmental and amenity forests. Biosecurity surveillance for exotic forest pests relies on monitoring of host trees — or sentinel trees — around high-risk sites, such as airports and seaports. There are few publicly available spatial databases of urban street and park trees, so locating and mapping host trees is conducted via ground surveys. This is time-consuming and resource-intensive, and generally does not provide complete coverage. Advances in remote sensing technologies and machine learning provide an opportunity for semi-automation of tree species mapping to assist in biosecurity surveillance. In this study, we obtained high resolution (≥12 cm), 10-band, multispectral imagery using the ArborCam™ system mounted to a fixed-wing aircraft over Sydney, Australia. We mapped 630 Pinus trees and 439 Platanus trees on-foot, validating their exact location on the airborne imagery using an in-field mapping app. Using a machine learning, convolutional neural network workflow, we were able to classify the two target genera with a high level of accuracy in a complex urban landscape. Overall accuracy was 92.1% for Pinus and 95.2% for Platanus, precision (user’s accuracy) ranged from 61.3% to 77.6%, sensitivity (producer’s accuracy) ranged from 92.7% to 95.2%, and F1-score ranged from 74.6% to 84.4%. Our study validates the potential for using multispectral imagery and machine learning to increase efficiencies in tree biosecurity surveillance. We encourage biosecurity agencies to consider greater use of this technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
褚井发布了新的文献求助10
1秒前
2秒前
zjh完成签到 ,获得积分10
3秒前
明亮的绫完成签到 ,获得积分10
4秒前
莎莎士比亚完成签到,获得积分10
4秒前
Psy完成签到,获得积分10
5秒前
小李叭叭发布了新的文献求助10
6秒前
俏皮沁完成签到,获得积分10
6秒前
jun完成签到 ,获得积分10
7秒前
半信美玉完成签到,获得积分10
7秒前
深情安青应助合适台灯采纳,获得30
7秒前
9秒前
10秒前
10秒前
wbgwudi完成签到,获得积分10
11秒前
12秒前
12秒前
失眠夏山发布了新的文献求助20
13秒前
程风破浪发布了新的文献求助10
13秒前
crowling完成签到,获得积分10
13秒前
啃猫爪发布了新的文献求助10
14秒前
0_1完成签到,获得积分10
14秒前
JIE发布了新的文献求助10
14秒前
董日甫完成签到 ,获得积分10
15秒前
16秒前
一只五条悟完成签到,获得积分10
16秒前
张彤彤完成签到 ,获得积分10
18秒前
斯文啊斯文完成签到 ,获得积分20
18秒前
19秒前
研学弟完成签到,获得积分10
20秒前
小老板完成签到,获得积分10
20秒前
Orange应助zfh采纳,获得10
21秒前
小二郎应助小李叭叭采纳,获得10
22秒前
CUREME完成签到,获得积分10
22秒前
摘星012发布了新的文献求助10
24秒前
小宏完成签到,获得积分10
25秒前
wanglejia完成签到,获得积分10
26秒前
张佳良完成签到,获得积分10
27秒前
上官若男应助WN采纳,获得10
29秒前
哇次阿普曼完成签到 ,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268