Large depth-of-field image fusion method for complex gyration class mechanical parts

人工智能 回转 图像融合 计算机科学 计算机视觉 图像处理 卷积神经网络 保险丝(电气) 领域(数学) 深度学习 图像(数学) 曲面(拓扑) 数学 工程类 几何学 纯数学 电气工程
作者
Zelin Zhang,Wenzhe Su,Yuyao Guo,Lei Wang,Xuhui Xia
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (01)
标识
DOI:10.1117/1.jei.32.1.013019
摘要

The local regions of complex gyration class mechanical parts are largely different, which results in the problem that their surface images are partially clear. This problem directly affects the effectiveness of vision methods on detecting surface defects. To tackle this problem, a large depth-of-field (DoF) surface image fusion method is proposed to obtain a full-focus image of complex mechanical parts, such as gyration class mechanical parts. We design an image acquisition platform based on the characteristics of gyration class parts to acquire their surface images accurately and clearly. We then propose a feature detection-based image registration method, by which the registered image can represent the surface information of the part completely and accurately. Additionally, we adopt a convolutional neural network-based image fusion method to achieve a fused large DoF surface image. Experimental studies were conducted to evaluate the performance of the deep-learning-based methods. The experimental results show that the proposed method can completely and clearly fuse the large DoF surface images of complex gyration class mechanical parts. The quality of the fused images has a significant improvement, and the proposed method is significantly more efficient than traditional fusion methods and other deep-learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjy发布了新的文献求助10
刚刚
2秒前
3秒前
nihao2023发布了新的文献求助10
3秒前
斯文败类应助silence采纳,获得10
3秒前
5秒前
俭朴书翠发布了新的文献求助10
7秒前
Mississippiecho完成签到,获得积分10
8秒前
科研通AI2S应助顺利琦采纳,获得10
10秒前
典雅巧凡发布了新的文献求助10
10秒前
10秒前
11秒前
nihao2023完成签到,获得积分10
14秒前
朴实的百招完成签到,获得积分10
15秒前
wanglihui完成签到 ,获得积分10
16秒前
16秒前
俭朴书翠完成签到,获得积分20
19秒前
21完成签到 ,获得积分10
20秒前
烟花应助样子采纳,获得10
20秒前
lili完成签到,获得积分0
20秒前
小夏咕噜发布了新的文献求助10
21秒前
guilin应助顺利琦采纳,获得10
21秒前
自然小鸭子完成签到,获得积分10
22秒前
23秒前
xiangdan发布了新的文献求助10
24秒前
26秒前
26秒前
27秒前
无花果应助Jieao采纳,获得10
27秒前
敏感绫萱完成签到,获得积分10
27秒前
朴实的晓筠完成签到,获得积分20
28秒前
29秒前
丘比特应助典雅巧凡采纳,获得10
29秒前
晓晓雪完成签到 ,获得积分10
29秒前
lee完成签到,获得积分10
29秒前
32秒前
whn完成签到,获得积分10
32秒前
wtjhhh发布了新的文献求助10
32秒前
完美世界应助着急的谷芹采纳,获得30
33秒前
33秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142187
求助须知:如何正确求助?哪些是违规求助? 2793134
关于积分的说明 7805663
捐赠科研通 2449433
什么是DOI,文献DOI怎么找? 1303289
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291