Multi-scale one-dimensional convolution tool wear monitoring based on multi-model fusion learning skills

稳健性(进化) 人工智能 计算机科学 机器学习 残余物 卷积(计算机科学) 工程类 数据挖掘 人工神经网络 算法 生物化学 化学 基因
作者
Wei Ma,Xianli Liu,Caixu Yue,Lihui Wang,Steven Y. Liang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:70: 69-98 被引量:30
标识
DOI:10.1016/j.jmsy.2023.07.007
摘要

Effective tool wear monitoring (TWM) is crucial for accurately assessing the degree of tool wear, guiding tool replacement during actual cutting processes, ensuring stable machine operation, and improving workpiece processing quality. With the arrival of the era of Big data, more and more data-driven monitoring methods are used for TWM problems, but it also exposes the problems of over reliance on artificial feature extraction and selection, low robustness of the actual industrial environment and poor generalization of different machining processes. To solve these problems, this paper proposes a multi-scale one-dimensional convolution (MODC-MMFL) end-to-end TWM integrated network model based on multi-model fusion learning (MMFL) skills. Firstly, multi-scale local features of multi-sensor signals are adaptively extracted by multi-scale one-dimensional convolution (MODC) network, to realize multi-feature fusion. Then, using MMFL skills, the MMFL network is composed of deep attention temporal convolutional network (DATCN) and stacked bidirectional gate recurrent unit network (SBIGRU), parallel learning time series features related to tool wear characteristics,and use a fusion layer to fuse these learned features, in which residual channel attention mechanism (RCAM) is used to improve network performance in DATCN network. Finally, the predicted tool wear value is output by fully connected regression network (FCR). In addition, this paper uses the PHM tool wear dataset to conduct experimental study on the proposed model, first verifying the effectiveness of the proposed model. Then, ablation experiments were conducted to investigate the impact of hyper-parameters on the predictive performance of the model. The model was enhanced through hyper-parameter tuning, and a generalized enhanced model was established. The experimental results showed that the enhanced model had better predictive performance compared to ordinary models. Finally, Gaussian noise is added to the original signal of the PHM tool wear dataset to simulate the high noise signal of the actual industrial environment. The noise signal is used to carry out experimental study on the enhanced model. The experimental results show that the enhanced model still has good prediction performance in the high noise environment and has high robustness to the actual industrial environment. After the above research, this paper uses the NASA tool wear dataset to conduct experimental study on the proposed model. The experimental results show that the proposed model has good predictive performance for different machining processes, verifying the generalizability of the proposed model for different machining processes. In summary, the model proposed in this paper can accurately predict tool wear values based on processing monitoring information, and has good predictive performance, anti-interference ability, and environmental adaptability, making it very suitable for practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛙蛙完成签到 ,获得积分10
1秒前
luowenbo发布了新的文献求助10
3秒前
活力完成签到,获得积分10
4秒前
悦耳的谷芹完成签到 ,获得积分10
4秒前
5秒前
ilmiss完成签到,获得积分10
5秒前
llw发布了新的文献求助10
6秒前
YFL完成签到,获得积分10
6秒前
6秒前
kk_yang完成签到,获得积分10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
wwz应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
向阳发布了新的文献求助10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得20
9秒前
zcl应助科研通管家采纳,获得150
9秒前
wwz应助科研通管家采纳,获得10
9秒前
chenqiumu应助科研通管家采纳,获得30
9秒前
Ankher应助科研通管家采纳,获得30
9秒前
Ankher应助科研通管家采纳,获得30
10秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
10秒前
GuoH应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305794
求助须知:如何正确求助?哪些是违规求助? 4451756
关于积分的说明 13853101
捐赠科研通 4339264
什么是DOI,文献DOI怎么找? 2382461
邀请新用户注册赠送积分活动 1377460
关于科研通互助平台的介绍 1345074