Multi-scale one-dimensional convolution tool wear monitoring based on multi-model fusion learning skills

稳健性(进化) 人工智能 计算机科学 机器学习 残余物 卷积(计算机科学) 工程类 数据挖掘 人工神经网络 算法 生物化学 基因 化学
作者
Wei Ma,Xianli Liu,Caixu Yue,Lihui Wang,Steven Y. Liang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:70: 69-98 被引量:19
标识
DOI:10.1016/j.jmsy.2023.07.007
摘要

Effective tool wear monitoring (TWM) is crucial for accurately assessing the degree of tool wear, guiding tool replacement during actual cutting processes, ensuring stable machine operation, and improving workpiece processing quality. With the arrival of the era of Big data, more and more data-driven monitoring methods are used for TWM problems, but it also exposes the problems of over reliance on artificial feature extraction and selection, low robustness of the actual industrial environment and poor generalization of different machining processes. To solve these problems, this paper proposes a multi-scale one-dimensional convolution (MODC-MMFL) end-to-end TWM integrated network model based on multi-model fusion learning (MMFL) skills. Firstly, multi-scale local features of multi-sensor signals are adaptively extracted by multi-scale one-dimensional convolution (MODC) network, to realize multi-feature fusion. Then, using MMFL skills, the MMFL network is composed of deep attention temporal convolutional network (DATCN) and stacked bidirectional gate recurrent unit network (SBIGRU), parallel learning time series features related to tool wear characteristics,and use a fusion layer to fuse these learned features, in which residual channel attention mechanism (RCAM) is used to improve network performance in DATCN network. Finally, the predicted tool wear value is output by fully connected regression network (FCR). In addition, this paper uses the PHM tool wear dataset to conduct experimental study on the proposed model, first verifying the effectiveness of the proposed model. Then, ablation experiments were conducted to investigate the impact of hyper-parameters on the predictive performance of the model. The model was enhanced through hyper-parameter tuning, and a generalized enhanced model was established. The experimental results showed that the enhanced model had better predictive performance compared to ordinary models. Finally, Gaussian noise is added to the original signal of the PHM tool wear dataset to simulate the high noise signal of the actual industrial environment. The noise signal is used to carry out experimental study on the enhanced model. The experimental results show that the enhanced model still has good prediction performance in the high noise environment and has high robustness to the actual industrial environment. After the above research, this paper uses the NASA tool wear dataset to conduct experimental study on the proposed model. The experimental results show that the proposed model has good predictive performance for different machining processes, verifying the generalizability of the proposed model for different machining processes. In summary, the model proposed in this paper can accurately predict tool wear values based on processing monitoring information, and has good predictive performance, anti-interference ability, and environmental adaptability, making it very suitable for practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仓鼠球发布了新的文献求助10
1秒前
刻苦代灵完成签到,获得积分20
1秒前
1秒前
小应发布了新的文献求助20
2秒前
橙果果发布了新的文献求助10
2秒前
Ryan123完成签到,获得积分10
2秒前
2秒前
2秒前
我是老大应助开放雪曼采纳,获得10
3秒前
852应助小语丝采纳,获得10
4秒前
More发布了新的文献求助10
5秒前
聪慧如波发布了新的文献求助10
5秒前
哎咿呀哎呀完成签到,获得积分10
5秒前
wanci应助di采纳,获得10
5秒前
8秒前
billevans发布了新的文献求助100
9秒前
顾矜应助活泼的牛排采纳,获得10
9秒前
从不内卷发布了新的文献求助10
12秒前
小杨完成签到 ,获得积分20
13秒前
14秒前
15秒前
小马甲应助无聊的傲蕾采纳,获得10
15秒前
17秒前
个性书翠发布了新的文献求助10
17秒前
开放雪曼完成签到,获得积分10
17秒前
斯文败类应助从不内卷采纳,获得10
17秒前
tingalan完成签到,获得积分10
17秒前
聪慧如波完成签到,获得积分10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
Rondab应助科研通管家采纳,获得10
18秒前
Rondab应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
Starwalker应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
糊涂一时完成签到 ,获得积分10
19秒前
Rondab应助科研通管家采纳,获得10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152