Multi-scale one-dimensional convolution tool wear monitoring based on multi-model fusion learning skills

稳健性(进化) 人工智能 计算机科学 机器学习 残余物 卷积(计算机科学) 工程类 数据挖掘 人工神经网络 算法 生物化学 化学 基因
作者
Wei Ma,Xianli Liu,Caixu Yue,Lihui Wang,Steven Y. Liang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:70: 69-98 被引量:30
标识
DOI:10.1016/j.jmsy.2023.07.007
摘要

Effective tool wear monitoring (TWM) is crucial for accurately assessing the degree of tool wear, guiding tool replacement during actual cutting processes, ensuring stable machine operation, and improving workpiece processing quality. With the arrival of the era of Big data, more and more data-driven monitoring methods are used for TWM problems, but it also exposes the problems of over reliance on artificial feature extraction and selection, low robustness of the actual industrial environment and poor generalization of different machining processes. To solve these problems, this paper proposes a multi-scale one-dimensional convolution (MODC-MMFL) end-to-end TWM integrated network model based on multi-model fusion learning (MMFL) skills. Firstly, multi-scale local features of multi-sensor signals are adaptively extracted by multi-scale one-dimensional convolution (MODC) network, to realize multi-feature fusion. Then, using MMFL skills, the MMFL network is composed of deep attention temporal convolutional network (DATCN) and stacked bidirectional gate recurrent unit network (SBIGRU), parallel learning time series features related to tool wear characteristics,and use a fusion layer to fuse these learned features, in which residual channel attention mechanism (RCAM) is used to improve network performance in DATCN network. Finally, the predicted tool wear value is output by fully connected regression network (FCR). In addition, this paper uses the PHM tool wear dataset to conduct experimental study on the proposed model, first verifying the effectiveness of the proposed model. Then, ablation experiments were conducted to investigate the impact of hyper-parameters on the predictive performance of the model. The model was enhanced through hyper-parameter tuning, and a generalized enhanced model was established. The experimental results showed that the enhanced model had better predictive performance compared to ordinary models. Finally, Gaussian noise is added to the original signal of the PHM tool wear dataset to simulate the high noise signal of the actual industrial environment. The noise signal is used to carry out experimental study on the enhanced model. The experimental results show that the enhanced model still has good prediction performance in the high noise environment and has high robustness to the actual industrial environment. After the above research, this paper uses the NASA tool wear dataset to conduct experimental study on the proposed model. The experimental results show that the proposed model has good predictive performance for different machining processes, verifying the generalizability of the proposed model for different machining processes. In summary, the model proposed in this paper can accurately predict tool wear values based on processing monitoring information, and has good predictive performance, anti-interference ability, and environmental adaptability, making it very suitable for practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助血小板采纳,获得30
刚刚
英姑应助周娅敏采纳,获得10
刚刚
刚刚
刚刚
lzj完成签到,获得积分10
1秒前
1秒前
烟花应助Yunnnnn_采纳,获得10
1秒前
shw发布了新的文献求助10
2秒前
jerry_x发布了新的文献求助10
2秒前
2秒前
义气恋风完成签到,获得积分10
2秒前
我是老大应助核动力驴采纳,获得10
3秒前
4秒前
爆米花应助yeahway采纳,获得10
4秒前
科研狗完成签到,获得积分10
5秒前
5秒前
小傅应助和谐的晓凡采纳,获得40
5秒前
完美世界应助abcd采纳,获得10
5秒前
guojingjing发布了新的文献求助10
6秒前
6秒前
6秒前
李大鸟给李大鸟的求助进行了留言
6秒前
夕阳红红发布了新的文献求助10
6秒前
微笑的冥幽完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
bk发布了新的文献求助10
8秒前
9秒前
阿飘发布了新的文献求助100
9秒前
科研通AI6.1应助玛卡巴卡采纳,获得10
9秒前
快乐小狗完成签到,获得积分10
9秒前
张雯雯完成签到,获得积分10
10秒前
宁少爷发布了新的文献求助30
10秒前
快乐发卡发布了新的文献求助10
11秒前
天真的人英完成签到 ,获得积分10
11秒前
11秒前
BowieHuang应助Sunflower采纳,获得10
12秒前
13秒前
危机的娩完成签到,获得积分20
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775767
求助须知:如何正确求助?哪些是违规求助? 5626110
关于积分的说明 15439803
捐赠科研通 4908065
什么是DOI,文献DOI怎么找? 2641093
邀请新用户注册赠送积分活动 1588846
关于科研通互助平台的介绍 1543723