Multi-View Clustering With Graph Learning for scRNA-Seq Data

聚类分析 计算机科学 图形 人工智能 聚类系数 机器学习 维数之咒 数据挖掘 理论计算机科学
作者
Wenming Wu,Wensheng Zhang,Weimin Hou,Xiaoke Ma
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 3535-3546 被引量:14
标识
DOI:10.1109/tcbb.2023.3298334
摘要

Advances in single-cell biotechnologies have generated the single-cell RNA sequencing (scRNA-seq) of gene expression profiles at cell levels, providing an opportunity to study cellular distribution. Although significant efforts developed in their analysis, many problems remain in studying cell types distribution because of the heterogeneity, high dimensionality, and noise of scRNA-seq. In this study, a multi-view clustering with graph learning algorithm (MCGL) for scRNA-seq data is proposed, which consists of multi-view learning, graph learning, and cell type clustering. In order to avoid a single feature space of scRNA-seq being inadequate to comprehensively characterize the functions of cells, MCGL constructs the multiple feature spaces and utilizes multi-view learning to comprehensively characterize scRNA-seq data from different perspectives. MCGL adaptively learns the similarity graphs of cells that overcome the dependence on fixed similarity, transforming scRNA-seq analysis into the analysis of multi-view clustering. MCGL decomposes the networks of cells into view-specific and common networks in multi-view learning, which better characterizes the topological relationship of cells. MCGL simultaneously utilizes multiple types of cell-cell networks and fully exploits the connection relationship between cells through the complementarity between networks to improve clustering performance. The graph learning, graph factorization, and cell-type clustering processes are accomplished simultaneously under one optimization framework. The performance of the MCGL algorithm is validated with ten scRNA-seq datasets from different scales, and experimental results imply that the proposed algorithm significantly outperforms fourteen state-of-the-art scRNA-seq algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白菜完成签到 ,获得积分10
刚刚
刚刚
勤劳的斑马完成签到,获得积分10
1秒前
xliiii完成签到,获得积分10
1秒前
生动曲奇完成签到,获得积分10
1秒前
Luffy完成签到,获得积分10
1秒前
霓虹我哄完成签到,获得积分10
5秒前
gaga完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
自然怀梦完成签到,获得积分10
9秒前
9秒前
阿曾完成签到 ,获得积分10
10秒前
13秒前
李白南南完成签到 ,获得积分10
14秒前
jrzsy完成签到,获得积分10
15秒前
15秒前
x银河里完成签到 ,获得积分10
15秒前
Lee完成签到,获得积分10
17秒前
李李李完成签到,获得积分10
18秒前
瘦瘦的迎南完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
LIUJIE完成签到,获得积分10
20秒前
鱼鱼关注了科研通微信公众号
20秒前
20秒前
排骨年糕完成签到 ,获得积分10
21秒前
巫马沛春完成签到,获得积分10
21秒前
24秒前
友好雅柏完成签到 ,获得积分10
24秒前
大豆终结者完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
3833059完成签到,获得积分10
26秒前
小波完成签到,获得积分10
27秒前
IFYK完成签到,获得积分10
28秒前
余奇峰发布了新的文献求助10
29秒前
隐形的大有完成签到,获得积分10
30秒前
机智的阿振完成签到,获得积分10
30秒前
朴素亦绿完成签到,获得积分10
31秒前
旧雨新知完成签到 ,获得积分0
33秒前
李霞完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613329
求助须知:如何正确求助?哪些是违规求助? 4018149
关于积分的说明 12437145
捐赠科研通 3700641
什么是DOI,文献DOI怎么找? 2040832
邀请新用户注册赠送积分活动 1073590
科研通“疑难数据库(出版商)”最低求助积分说明 957258