Multi-View Clustering With Graph Learning for scRNA-Seq Data

聚类分析 计算机科学 图形 人工智能 聚类系数 机器学习 维数之咒 数据挖掘 理论计算机科学
作者
Wenming Wu,Wensheng Zhang,Weimin Hou,Xiaoke Ma
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 3535-3546 被引量:14
标识
DOI:10.1109/tcbb.2023.3298334
摘要

Advances in single-cell biotechnologies have generated the single-cell RNA sequencing (scRNA-seq) of gene expression profiles at cell levels, providing an opportunity to study cellular distribution. Although significant efforts developed in their analysis, many problems remain in studying cell types distribution because of the heterogeneity, high dimensionality, and noise of scRNA-seq. In this study, a multi-view clustering with graph learning algorithm (MCGL) for scRNA-seq data is proposed, which consists of multi-view learning, graph learning, and cell type clustering. In order to avoid a single feature space of scRNA-seq being inadequate to comprehensively characterize the functions of cells, MCGL constructs the multiple feature spaces and utilizes multi-view learning to comprehensively characterize scRNA-seq data from different perspectives. MCGL adaptively learns the similarity graphs of cells that overcome the dependence on fixed similarity, transforming scRNA-seq analysis into the analysis of multi-view clustering. MCGL decomposes the networks of cells into view-specific and common networks in multi-view learning, which better characterizes the topological relationship of cells. MCGL simultaneously utilizes multiple types of cell-cell networks and fully exploits the connection relationship between cells through the complementarity between networks to improve clustering performance. The graph learning, graph factorization, and cell-type clustering processes are accomplished simultaneously under one optimization framework. The performance of the MCGL algorithm is validated with ten scRNA-seq datasets from different scales, and experimental results imply that the proposed algorithm significantly outperforms fourteen state-of-the-art scRNA-seq algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骏骏发布了新的文献求助30
刚刚
JM发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
3秒前
安安安发布了新的文献求助10
4秒前
4秒前
豆芽菜完成签到,获得积分10
5秒前
6秒前
徐志豪发布了新的文献求助10
6秒前
111111发布了新的文献求助10
6秒前
Vater发布了新的文献求助10
7秒前
吃个馍馍完成签到,获得积分10
9秒前
9秒前
李勤_秦礼发布了新的文献求助10
9秒前
lxdfrank发布了新的文献求助10
10秒前
茶茶完成签到,获得积分10
10秒前
细心的凝芙完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
顺利寻真完成签到,获得积分10
13秒前
我是老大应助WangPeidi采纳,获得10
14秒前
小二郎应助无限的绮晴采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
小蒋发布了新的文献求助10
15秒前
彭于晏应助红色小矮人采纳,获得10
16秒前
17秒前
阅遍SCI完成签到,获得积分0
17秒前
小马甲应助吃个馍馍采纳,获得10
18秒前
19秒前
orixero应助訾新玉采纳,获得10
20秒前
岁月轮回发布了新的文献求助10
21秒前
21秒前
111111完成签到,获得积分10
22秒前
25秒前
CodeCraft应助科研圣体采纳,获得10
26秒前
年轻金毛完成签到,获得积分20
27秒前
浮雨微清完成签到,获得积分10
28秒前
Maestro_S发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031