Multi-View Clustering With Graph Learning for scRNA-Seq Data

聚类分析 计算机科学 图形 人工智能 聚类系数 机器学习 维数之咒 数据挖掘 理论计算机科学
作者
Wenming Wu,Wensheng Zhang,Weimin Hou,Xiaoke Ma
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 3535-3546 被引量:14
标识
DOI:10.1109/tcbb.2023.3298334
摘要

Advances in single-cell biotechnologies have generated the single-cell RNA sequencing (scRNA-seq) of gene expression profiles at cell levels, providing an opportunity to study cellular distribution. Although significant efforts developed in their analysis, many problems remain in studying cell types distribution because of the heterogeneity, high dimensionality, and noise of scRNA-seq. In this study, a multi-view clustering with graph learning algorithm (MCGL) for scRNA-seq data is proposed, which consists of multi-view learning, graph learning, and cell type clustering. In order to avoid a single feature space of scRNA-seq being inadequate to comprehensively characterize the functions of cells, MCGL constructs the multiple feature spaces and utilizes multi-view learning to comprehensively characterize scRNA-seq data from different perspectives. MCGL adaptively learns the similarity graphs of cells that overcome the dependence on fixed similarity, transforming scRNA-seq analysis into the analysis of multi-view clustering. MCGL decomposes the networks of cells into view-specific and common networks in multi-view learning, which better characterizes the topological relationship of cells. MCGL simultaneously utilizes multiple types of cell-cell networks and fully exploits the connection relationship between cells through the complementarity between networks to improve clustering performance. The graph learning, graph factorization, and cell-type clustering processes are accomplished simultaneously under one optimization framework. The performance of the MCGL algorithm is validated with ten scRNA-seq datasets from different scales, and experimental results imply that the proposed algorithm significantly outperforms fourteen state-of-the-art scRNA-seq algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zozox完成签到 ,获得积分10
2秒前
stark完成签到,获得积分10
3秒前
SABUBU完成签到,获得积分10
5秒前
zhuxd完成签到 ,获得积分10
6秒前
YHBBZ完成签到 ,获得积分10
9秒前
浮游应助多恩下采纳,获得10
11秒前
菠萝包完成签到 ,获得积分10
13秒前
wo93872ni完成签到 ,获得积分10
13秒前
轻松的越彬完成签到 ,获得积分10
15秒前
未完成完成签到,获得积分10
18秒前
传统的孤丝完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
23秒前
plz94完成签到 ,获得积分10
35秒前
ABJ完成签到 ,获得积分10
36秒前
Sandy完成签到 ,获得积分10
36秒前
潇洒冰蓝完成签到,获得积分10
40秒前
spring完成签到 ,获得积分10
42秒前
Wsyyy完成签到 ,获得积分10
44秒前
煎饼果子完成签到 ,获得积分10
44秒前
WSY完成签到 ,获得积分10
46秒前
47秒前
小蘑菇应助失眠的小蘑菇采纳,获得10
49秒前
49秒前
量子星尘发布了新的文献求助10
54秒前
Ai_niyou完成签到,获得积分10
54秒前
zyb完成签到 ,获得积分10
55秒前
rsdggsrser完成签到 ,获得积分10
57秒前
MRJJJJ完成签到,获得积分10
59秒前
ShishanXue完成签到 ,获得积分10
59秒前
Ziang_Liu完成签到 ,获得积分10
1分钟前
9527完成签到,获得积分10
1分钟前
科研通AI2S应助殷楷霖采纳,获得10
1分钟前
cq_2完成签到,获得积分0
1分钟前
oscar完成签到,获得积分10
1分钟前
1分钟前
QQWRV完成签到,获得积分10
1分钟前
凌泉完成签到 ,获得积分10
1分钟前
顺利问玉完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
七叶花开完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645043
求助须知:如何正确求助?哪些是违规求助? 4767578
关于积分的说明 15026217
捐赠科研通 4803454
什么是DOI,文献DOI怎么找? 2568317
邀请新用户注册赠送积分活动 1525684
关于科研通互助平台的介绍 1485247