亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-View Clustering With Graph Learning for scRNA-Seq Data

聚类分析 计算机科学 图形 人工智能 聚类系数 机器学习 维数之咒 数据挖掘 理论计算机科学
作者
Wenming Wu,Wensheng Zhang,Weimin Hou,Xiaoke Ma
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 3535-3546 被引量:14
标识
DOI:10.1109/tcbb.2023.3298334
摘要

Advances in single-cell biotechnologies have generated the single-cell RNA sequencing (scRNA-seq) of gene expression profiles at cell levels, providing an opportunity to study cellular distribution. Although significant efforts developed in their analysis, many problems remain in studying cell types distribution because of the heterogeneity, high dimensionality, and noise of scRNA-seq. In this study, a multi-view clustering with graph learning algorithm (MCGL) for scRNA-seq data is proposed, which consists of multi-view learning, graph learning, and cell type clustering. In order to avoid a single feature space of scRNA-seq being inadequate to comprehensively characterize the functions of cells, MCGL constructs the multiple feature spaces and utilizes multi-view learning to comprehensively characterize scRNA-seq data from different perspectives. MCGL adaptively learns the similarity graphs of cells that overcome the dependence on fixed similarity, transforming scRNA-seq analysis into the analysis of multi-view clustering. MCGL decomposes the networks of cells into view-specific and common networks in multi-view learning, which better characterizes the topological relationship of cells. MCGL simultaneously utilizes multiple types of cell-cell networks and fully exploits the connection relationship between cells through the complementarity between networks to improve clustering performance. The graph learning, graph factorization, and cell-type clustering processes are accomplished simultaneously under one optimization framework. The performance of the MCGL algorithm is validated with ten scRNA-seq datasets from different scales, and experimental results imply that the proposed algorithm significantly outperforms fourteen state-of-the-art scRNA-seq algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩学冲完成签到 ,获得积分10
7秒前
白色蒲公英完成签到,获得积分10
8秒前
sujiaoziemo完成签到,获得积分10
14秒前
BowieHuang应助Freshman采纳,获得10
15秒前
一行完成签到,获得积分10
29秒前
iman完成签到,获得积分10
38秒前
40秒前
40秒前
45秒前
缥缈雯发布了新的文献求助10
47秒前
敬业乐群完成签到,获得积分10
56秒前
暴躁的鱼完成签到 ,获得积分10
1分钟前
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ff发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
思源应助kaia采纳,获得10
3分钟前
3分钟前
3分钟前
ZanE完成签到,获得积分10
3分钟前
3分钟前
积极的觅松完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
kaia完成签到,获得积分10
4分钟前
rodrisk完成签到 ,获得积分10
4分钟前
kaia发布了新的文献求助10
4分钟前
4分钟前
Lucas应助小巧含之采纳,获得10
4分钟前
少川完成签到 ,获得积分10
4分钟前
俭朴蜜蜂完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549206
求助须知:如何正确求助?哪些是违规求助? 4634546
关于积分的说明 14634767
捐赠科研通 4575948
什么是DOI,文献DOI怎么找? 2509399
邀请新用户注册赠送积分活动 1485299
关于科研通互助平台的介绍 1456488