亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-View Clustering With Graph Learning for scRNA-Seq Data

聚类分析 计算机科学 图形 人工智能 聚类系数 机器学习 维数之咒 数据挖掘 理论计算机科学
作者
Wenming Wu,Wensheng Zhang,Weimin Hou,Xiaoke Ma
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 3535-3546 被引量:14
标识
DOI:10.1109/tcbb.2023.3298334
摘要

Advances in single-cell biotechnologies have generated the single-cell RNA sequencing (scRNA-seq) of gene expression profiles at cell levels, providing an opportunity to study cellular distribution. Although significant efforts developed in their analysis, many problems remain in studying cell types distribution because of the heterogeneity, high dimensionality, and noise of scRNA-seq. In this study, a multi-view clustering with graph learning algorithm (MCGL) for scRNA-seq data is proposed, which consists of multi-view learning, graph learning, and cell type clustering. In order to avoid a single feature space of scRNA-seq being inadequate to comprehensively characterize the functions of cells, MCGL constructs the multiple feature spaces and utilizes multi-view learning to comprehensively characterize scRNA-seq data from different perspectives. MCGL adaptively learns the similarity graphs of cells that overcome the dependence on fixed similarity, transforming scRNA-seq analysis into the analysis of multi-view clustering. MCGL decomposes the networks of cells into view-specific and common networks in multi-view learning, which better characterizes the topological relationship of cells. MCGL simultaneously utilizes multiple types of cell-cell networks and fully exploits the connection relationship between cells through the complementarity between networks to improve clustering performance. The graph learning, graph factorization, and cell-type clustering processes are accomplished simultaneously under one optimization framework. The performance of the MCGL algorithm is validated with ten scRNA-seq datasets from different scales, and experimental results imply that the proposed algorithm significantly outperforms fourteen state-of-the-art scRNA-seq algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝朱发布了新的文献求助10
刚刚
KINGAZX完成签到 ,获得积分10
25秒前
诸葛平卉完成签到 ,获得积分10
33秒前
蓝朱发布了新的文献求助10
45秒前
51秒前
yf完成签到,获得积分10
52秒前
57秒前
1分钟前
蓝朱完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Able完成签到,获得积分10
1分钟前
传奇3应助噢斯帕斯基采纳,获得10
1分钟前
zbr完成签到 ,获得积分10
1分钟前
pia叽完成签到 ,获得积分10
2分钟前
balko完成签到,获得积分10
2分钟前
2分钟前
ersheng发布了新的文献求助10
2分钟前
Criminology34应助坦率广山采纳,获得10
2分钟前
所所应助啦啦啦采纳,获得10
2分钟前
万能图书馆应助啦啦啦采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
ling发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
iNk应助mlx采纳,获得30
3分钟前
噢斯帕斯基关注了科研通微信公众号
3分钟前
4分钟前
充电宝应助ling采纳,获得10
4分钟前
啦啦啦发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
NattyPoe发布了新的文献求助10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639713
求助须知:如何正确求助?哪些是违规求助? 4749883
关于积分的说明 15007176
捐赠科研通 4797859
什么是DOI,文献DOI怎么找? 2563980
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529