已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-View Clustering With Graph Learning for scRNA-Seq Data

聚类分析 计算机科学 图形 人工智能 聚类系数 机器学习 维数之咒 特征(语言学) 数据挖掘 理论计算机科学 语言学 哲学
作者
Wenming Wu,Wensheng Zhang,Weimin Hou,Xiaoke Ma
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 3535-3546 被引量:6
标识
DOI:10.1109/tcbb.2023.3298334
摘要

Advances in single-cell biotechnologies have generated the single-cell RNA sequencing (scRNA-seq) of gene expression profiles at cell levels, providing an opportunity to study cellular distribution. Although significant efforts developed in their analysis, many problems remain in studying cell types distribution because of the heterogeneity, high dimensionality, and noise of scRNA-seq. In this study, a multi-view clustering with graph learning algorithm (MCGL) for scRNA-seq data is proposed, which consists of multi-view learning, graph learning, and cell type clustering. In order to avoid a single feature space of scRNA-seq being inadequate to comprehensively characterize the functions of cells, MCGL constructs the multiple feature spaces and utilizes multi-view learning to comprehensively characterize scRNA-seq data from different perspectives. MCGL adaptively learns the similarity graphs of cells that overcome the dependence on fixed similarity, transforming scRNA-seq analysis into the analysis of multi-view clustering. MCGL decomposes the networks of cells into view-specific and common networks in multi-view learning, which better characterizes the topological relationship of cells. MCGL simultaneously utilizes multiple types of cell-cell networks and fully exploits the connection relationship between cells through the complementarity between networks to improve clustering performance. The graph learning, graph factorization, and cell-type clustering processes are accomplished simultaneously under one optimization framework. The performance of the MCGL algorithm is validated with ten scRNA-seq datasets from different scales, and experimental results imply that the proposed algorithm significantly outperforms fourteen state-of-the-art scRNA-seq algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘子完成签到 ,获得积分10
1秒前
6秒前
小花小宝和阿飞完成签到 ,获得积分10
7秒前
朴素的小霸王完成签到 ,获得积分20
9秒前
财年发布了新的文献求助10
11秒前
CYC完成签到,获得积分10
14秒前
代扁扁发布了新的文献求助10
15秒前
努力发一区完成签到 ,获得积分10
16秒前
李爱国应助anna采纳,获得10
17秒前
HRZ完成签到 ,获得积分10
18秒前
reegol完成签到,获得积分10
20秒前
罗博超完成签到,获得积分10
20秒前
chaotianjiao完成签到 ,获得积分10
20秒前
21秒前
代扁扁完成签到 ,获得积分10
27秒前
阳光沛凝完成签到,获得积分20
45秒前
Binbin完成签到 ,获得积分10
51秒前
53秒前
小吴同学发布了新的文献求助10
56秒前
ycp完成签到,获得积分10
57秒前
阿菜完成签到,获得积分10
57秒前
1分钟前
ding应助畅快菠萝采纳,获得10
1分钟前
1分钟前
酷酷念瑶发布了新的文献求助10
1分钟前
1分钟前
whisper完成签到,获得积分10
1分钟前
星辰大海应助酷酷念瑶采纳,获得10
1分钟前
魔幻诗兰完成签到,获得积分10
1分钟前
whisper发布了新的文献求助10
1分钟前
lwg完成签到,获得积分10
1分钟前
光亮的寻雪完成签到 ,获得积分10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
飞飞飞fff完成签到 ,获得积分10
1分钟前
体育爱好者完成签到,获得积分10
1分钟前
酷酷念瑶完成签到 ,获得积分20
1分钟前
小小飞xxf完成签到 ,获得积分10
1分钟前
1分钟前
fane完成签到,获得积分10
1分钟前
老才完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353435
求助须知:如何正确求助?哪些是违规求助? 2978016
关于积分的说明 8683528
捐赠科研通 2659372
什么是DOI,文献DOI怎么找? 1456201
科研通“疑难数据库(出版商)”最低求助积分说明 674297
邀请新用户注册赠送积分活动 665016