Multi-View Clustering With Graph Learning for scRNA-Seq Data

聚类分析 计算机科学 图形 人工智能 聚类系数 机器学习 维数之咒 数据挖掘 理论计算机科学
作者
Wenming Wu,Wensheng Zhang,Weimin Hou,Xiaoke Ma
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 3535-3546 被引量:9
标识
DOI:10.1109/tcbb.2023.3298334
摘要

Advances in single-cell biotechnologies have generated the single-cell RNA sequencing (scRNA-seq) of gene expression profiles at cell levels, providing an opportunity to study cellular distribution. Although significant efforts developed in their analysis, many problems remain in studying cell types distribution because of the heterogeneity, high dimensionality, and noise of scRNA-seq. In this study, a multi-view clustering with graph learning algorithm (MCGL) for scRNA-seq data is proposed, which consists of multi-view learning, graph learning, and cell type clustering. In order to avoid a single feature space of scRNA-seq being inadequate to comprehensively characterize the functions of cells, MCGL constructs the multiple feature spaces and utilizes multi-view learning to comprehensively characterize scRNA-seq data from different perspectives. MCGL adaptively learns the similarity graphs of cells that overcome the dependence on fixed similarity, transforming scRNA-seq analysis into the analysis of multi-view clustering. MCGL decomposes the networks of cells into view-specific and common networks in multi-view learning, which better characterizes the topological relationship of cells. MCGL simultaneously utilizes multiple types of cell-cell networks and fully exploits the connection relationship between cells through the complementarity between networks to improve clustering performance. The graph learning, graph factorization, and cell-type clustering processes are accomplished simultaneously under one optimization framework. The performance of the MCGL algorithm is validated with ten scRNA-seq datasets from different scales, and experimental results imply that the proposed algorithm significantly outperforms fourteen state-of-the-art scRNA-seq algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JJQ完成签到,获得积分10
刚刚
选择发布了新的文献求助10
1秒前
聆风发布了新的文献求助10
2秒前
精灵发布了新的文献求助10
2秒前
圆彰七大完成签到 ,获得积分10
2秒前
2秒前
岁岁有完成签到,获得积分20
4秒前
务实蜻蜓发布了新的文献求助10
5秒前
李健的粉丝团团长应助wys采纳,获得10
6秒前
8秒前
8秒前
9秒前
我爱学习呢完成签到,获得积分10
9秒前
小二郎应助健忘的初翠采纳,获得10
10秒前
科研通AI5应助务实蜻蜓采纳,获得10
10秒前
启程牛牛完成签到,获得积分0
10秒前
zaza发布了新的文献求助10
11秒前
上官若男应助ZOOOEY采纳,获得10
11秒前
杨媛完成签到,获得积分10
11秒前
12秒前
aaaaa发布了新的文献求助10
12秒前
呆橘完成签到 ,获得积分10
12秒前
13秒前
YamDaamCaa应助陈最采纳,获得30
14秒前
青苔完成签到,获得积分10
14秒前
研友_VZG7GZ应助真源莫方采纳,获得10
15秒前
角落的蘑菇完成签到,获得积分10
15秒前
16秒前
17秒前
aaa完成签到 ,获得积分10
17秒前
墨客完成签到,获得积分20
18秒前
不喝可乐发布了新的文献求助10
20秒前
aaaaa完成签到,获得积分10
21秒前
小宏发布了新的文献求助10
21秒前
万能图书馆应助花花采纳,获得10
22秒前
22秒前
24秒前
24秒前
提拉米苏完成签到 ,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421