In order to achieve efficient utilization of solar energy resources, this study combines the trans-critical organic Rankine cycle (ORC) power cycle (TORC) with the trans-critical CO2 refrigeration cycle (TCO2). Additionally, a comprehensive three-level index decision evaluation system is developed based on system safety and environmental protection, thermodynamics, and techno-economic performance. The evaluation focuses on typical medium- and high-temperature solar energy applications and considers six organic working gases. The evaluation results demonstrate that the R600 + CO2 solution outperformed the others. This solution achieved a maximum net output power (Pnet) of 1531.31 kW and 2306.43 kW, a maximum coefficient of performance (COP) of 3.16, a predicted payback period of 2.651 years and 2.033 years, and a benefit–investment ratio of 4.533 and 5.773.