AI-Based Safety Helmet for Mining Workers Using IoT Technology and ARM Cortex-M

煤矿开采 工程类 汽车工程 可穿戴计算机 计算机安全 实时计算 电气工程 计算机科学 模拟 嵌入式系统 废物管理
作者
K. Lalitha,G. Ramya,M. Shunmugathammal
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (18): 21355-21362 被引量:12
标识
DOI:10.1109/jsen.2023.3296523
摘要

Coal mining is one of the most hazardous activities in the world. They frequently encountered unexpected emergencies. The use of the Internet of Things (IoT) and artificial intelligence (AI) in mining helps improve worker health management and prevent injuries. In this study, a personal protective equipment (helmet) is proposed, which can provide alert signals to the control center to inform the miner about the risk. With the use of several sensors integrated into the STM32 module, it continuously analyzes ambient conditions (toxic gases, temperature, and humidity), as well as the worker's health conditions, such as heart rate and vibration generated by excavation and blasting, which are subsequently relayed to the control center using a low-energy Bluetooth module. This system also has a panic button that may alert the control unit if there are any dangers to the workers. The DHT11 (digital temperature humidity sensor) can measure the temperature and humidity levels with a degree of accuracy that falls within a range of ±5%. The MQ135 sensor, on the other hand, can sense gas concentrations with 85% accuracy. In coal mines, high gas concentrations can cause miners to feel dizzy and disoriented. To address this issue, miners can press a panic button located on their helmets, which alerts the control center staff and speeds up rescue operations. In addition, a heart rate sensor was integrated with the STM module using the inter integrated circuits (I2C) protocol. If the heart rate reading falls below 60 or exceeds 100, it is considered an abnormal condition that requires attention. Furthermore, a machine learning algorithm with a convolutional neural network helps to train the artificial intelligence model to recognize the worker's gestures. Here, four types of gestures were fixed, which helped the workers communicate. These gestures have been labeled GOOD, NOT GOOD, DOING FINE, and EMERGENCY EVACUATION. A receiver air position indicator (API) is proposed to visualize the results from various sensors and take appropriate action to safeguard miners.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫心完成签到 ,获得积分10
刚刚
清风完成签到,获得积分10
1秒前
爆米花应助vvei采纳,获得10
2秒前
坦率斑马完成签到,获得积分20
2秒前
7秒前
dx完成签到,获得积分10
7秒前
10秒前
仄言发布了新的文献求助30
12秒前
14秒前
脑洞疼应助辛未采纳,获得10
14秒前
14秒前
胖胖完成签到,获得积分20
14秒前
zhai完成签到 ,获得积分10
15秒前
Edward完成签到,获得积分10
16秒前
bold发布了新的文献求助10
17秒前
vvei发布了新的文献求助10
18秒前
19秒前
Akim应助LucyMartinez采纳,获得10
19秒前
学术大亨完成签到,获得积分10
20秒前
QAQ发布了新的文献求助10
20秒前
小慧儿发布了新的文献求助10
22秒前
feng发布了新的文献求助10
23秒前
26秒前
28秒前
da_line完成签到,获得积分10
28秒前
辛未发布了新的文献求助10
31秒前
31秒前
dl发布了新的文献求助10
32秒前
34秒前
34秒前
JamesPei应助bold采纳,获得10
34秒前
彭于晏应助科研通管家采纳,获得10
34秒前
酷波er应助djbj2022采纳,获得10
34秒前
李爱国应助科研通管家采纳,获得10
34秒前
陈尴尬完成签到,获得积分10
34秒前
Orange应助科研通管家采纳,获得10
34秒前
yznfly应助科研通管家采纳,获得20
34秒前
脑洞疼应助科研通管家采纳,获得10
34秒前
淡然安雁完成签到 ,获得积分10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877742
求助须知:如何正确求助?哪些是违规求助? 6545170
关于积分的说明 15682078
捐赠科研通 4996405
什么是DOI,文献DOI怎么找? 2692689
邀请新用户注册赠送积分活动 1634723
关于科研通互助平台的介绍 1592383