AI-Based Safety Helmet for Mining Workers Using IoT Technology and ARM Cortex-M

煤矿开采 工程类 汽车工程 可穿戴计算机 计算机安全 实时计算 电气工程 计算机科学 模拟 嵌入式系统 废物管理
作者
K. Lalitha,G. Ramya,M. Shunmugathammal
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (18): 21355-21362 被引量:5
标识
DOI:10.1109/jsen.2023.3296523
摘要

Coal mining is one of the most hazardous activities in the world. They frequently encountered unexpected emergencies. The use of the Internet of Things (IoT) and artificial intelligence (AI) in mining helps improve worker health management and prevent injuries. In this study, a personal protective equipment (helmet) is proposed, which can provide alert signals to the control center to inform the miner about the risk. With the use of several sensors integrated into the STM32 module, it continuously analyzes ambient conditions (toxic gases, temperature, and humidity), as well as the worker's health conditions, such as heart rate and vibration generated by excavation and blasting, which are subsequently relayed to the control center using a low-energy Bluetooth module. This system also has a panic button that may alert the control unit if there are any dangers to the workers. The DHT11 (digital temperature humidity sensor) can measure the temperature and humidity levels with a degree of accuracy that falls within a range of ±5%. The MQ135 sensor, on the other hand, can sense gas concentrations with 85% accuracy. In coal mines, high gas concentrations can cause miners to feel dizzy and disoriented. To address this issue, miners can press a panic button located on their helmets, which alerts the control center staff and speeds up rescue operations. In addition, a heart rate sensor was integrated with the STM module using the inter integrated circuits (I2C) protocol. If the heart rate reading falls below 60 or exceeds 100, it is considered an abnormal condition that requires attention. Furthermore, a machine learning algorithm with a convolutional neural network helps to train the artificial intelligence model to recognize the worker's gestures. Here, four types of gestures were fixed, which helped the workers communicate. These gestures have been labeled GOOD, NOT GOOD, DOING FINE, and EMERGENCY EVACUATION. A receiver air position indicator (API) is proposed to visualize the results from various sensors and take appropriate action to safeguard miners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
CX完成签到 ,获得积分10
1秒前
孙严青完成签到,获得积分10
1秒前
1秒前
111完成签到,获得积分10
2秒前
2秒前
5秒前
guangwow发布了新的文献求助10
5秒前
5秒前
孙严青发布了新的文献求助30
5秒前
11发布了新的文献求助10
6秒前
7秒前
8秒前
苗苗完成签到,获得积分10
8秒前
8秒前
Windlove发布了新的文献求助10
10秒前
小年糕完成签到,获得积分10
10秒前
10秒前
科研通AI5应助Malone采纳,获得10
10秒前
书霂完成签到,获得积分10
10秒前
WLY完成签到 ,获得积分10
11秒前
13秒前
13秒前
Frank发布了新的文献求助10
14秒前
小年糕发布了新的文献求助10
15秒前
吕广德完成签到,获得积分10
15秒前
15秒前
benbenbear发布了新的文献求助30
16秒前
劲秉应助多肉葡萄采纳,获得20
16秒前
科研通AI5应助缓慢的微笑采纳,获得10
17秒前
18秒前
Rae sremer发布了新的文献求助10
22秒前
温柔书琴关注了科研通微信公众号
24秒前
晨晨CC发布了新的文献求助10
24秒前
潇洒一曲完成签到,获得积分10
25秒前
酷波er应助炙热小馒头采纳,获得10
26秒前
勤劳糜完成签到,获得积分10
26秒前
IC小毛孩完成签到 ,获得积分10
27秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673449
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784078
捐赠科研通 2939630
什么是DOI,文献DOI怎么找? 1611183
邀请新用户注册赠送积分活动 760809
科研通“疑难数据库(出版商)”最低求助积分说明 736290